
Multicapacity Facility Selection in Networks

Alvis Logins

Aarhus University

Panagiotis Karras

Aarhus University

Christian S. Jensen

Aalborg University

Abstract—Consider the task of selecting a set of facilities, e.g.,
hotspots, shops, or utility stations, each with a capacity to serve a
certain number of customers. Given a set of customer locations,
we have to minimize a cumulative distance between each customer
and the facility earmarked to serve this customer within its
capacity. This problem is known as the Capacitated k-Median
(CKM) problem. In a data-intensive variant, distances are calcu-
lated over a network, while a data set associates each candidate
facility location with a different capacity. In other words, going
beyond positioning facilities in a metric space, the problem is
to select a small subset out of a large data set of candidate
network-based facilities with capacity constraints. We call this
variant the Multicapacity Facility Selection (MCFS) problem.
Linear Programming solutions are unable to contend with the
network sizes and supplies of candidate facilities encountered in
real-world applications; yet the problem may need to be solved
scalably and repeatedly, as in applications requiring the dynamic
reallocation of customers to facilities. We present the first, to
our knowledge, solution to the MCFS problem that achieves
both scalability and high quality, the Wide Matching Algorithm
(WMA). WMA iteratively assigns customers to candidate facilities
and leverages a data-driven heuristic for the SET COVER problem
inherent to the MCFS problem. An extensive experimental study
with real-world and synthetic networks demonstrates that WMA
scales gracefully to million-node networks and large facility and
customer data sets; further, WMA provides a solution quality
superior to scalable baselines (also proposed in the paper) and
competitive vis-á-vis the optimal solution, returned by an off-the-
shelf solver that runs only on small facility databases.

I. INTRODUCTION

A type of problem arising in smart city applications calls

for selecting an attractive subset out of a set of candidate

facility locations (e.g., telecommunications hotspots, meeting

points, bike stations, recycling stations, electric vehicle charg-

ing stations, or waste disposal sites) to provide a service in an

urban network. The fitness of the selected set is measured

by means of total convenience or utility with respect to a

set of geographically located customers. This problem may

need to be solved repeatedly; for example, one may need to

periodically decide on a set of service locations, depending on

which customers declare interest for a certain offering.

The input data typically includes a weighted graph, repre-

senting a road network and associated candidate facility loca-

tions and customer locations. Figure 1 provides two examples,

where we need to select a subset out of a set of eligible

facilities (in blue) so as to serve a predefined set of customers

(in red) in Las Vegas or Copenhagen.

In the Multicapacity Facility Selection (MCFS) problem,

each candidate facility has a capacity, and we need to choose k

Work done primarily while all authors were with Aalborg University.

(a) Las Vegas (b) Copenhagen

Fig. 1: Customers (red), and cafés (blue).
facilities and assign each customer to one of them while

observing the capacity constraints; as the number of served

customers is bounded by capacity constraints, an objective

of maximizing that number does not arise; the objective is

to optimize a notion of customer convenience, defined in

terms of the distances between customer and the facilities

they are assigned to. The MCFS problem amounts to the

hard and nonuniform case of the capacitated k-median (CKM)

problem [1] over a network. Here, hard indicates that only

one facility can be placed at a certain location; the soft

version allows for multiple facilities at the same location.

Next, nonuniform indicates that facility capacities differ; in

the uniform version, all capacities are equal. Last, the network

setting need not yield a metric distance notion.

Unfortunately, the problem is already NP-hard in the soft

and uniform case over a metric space [2]. Small instances can

be solved exactly by Linear Programming (LP) and Mixed

Integer Programming (MIP) solvers [3]. However, such solvers

do not scale beyond networks with a few thousand nodes.

Past research has proposed LP relaxation [4] methods that

provide approximation guarantees while violating constraints

on facility capacity or cardinality. The most recent works in

the area introduce an LP formulation, called rectangle LP,

tailored to the uniform [5] and soft nonuniform [6] capacitated

k-median problems, and develop rounding algorithms that

achieve constant approximation guarantees while violating the

cardinality constraint k. Such solutions remain impractica-

ble in real-world applications due to their high-polynomial

time complexities, while an approximation algorithm for the

nonuniform hard-capacitated case has yet to be developed [7].

Local search techniques exist for the CKM problem and

related facility location problems [2], [8], known as group

nearest group queries in the database community [9]; however,

such solutions solve only the uncapacitated and uniform soft-

794

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00076

capacitated problem cases; they accommodate neither nonuni-

form nor hard capacity constraints. Thus, to our knowledge,

no existing solution achieves both high quality and scalability

to large networks and customer sets in the MCFS problem.

We present an effective and scalable MCFS solution, the

Wide Matching Algorithm (WMA). WMA progressively as-

signs customers to strategically chosen candidate facilities,

translating a bipartite assignment under capacity constraints

to a network setting, and decides on its termination by means

of a SET COVER heuristic. We contribute the following:

• We attempt the first, to our knowledge, solution for

the MCFS problem that achieves high quality and is

applicable to large real-world networks.

• We develop an algorithm, WMA, that combines a data-

driven heuristic for set cover with a principled spatial

assignment subroutine.

• We introduce a reasonable baseline MCFS heuristic that

clusters customers in groups satisfying capacity con-

strains, following a Hilbert space-filling curve.

• We conduct an experimental study with synthetic and real

data, demonstrating that WMA scales to million-node and

million-edge networks with large customer and facility

sets and achieves near-optimal solution quality, as seen

in cases where the exact solution can be computed.

II. PROBLEM STATEMENT

Consider a network represented as a weighted (directed or

undirected) graph G = (V,E,W), where V is a set of

nodes that model urban locations such as intersections and

road ends, E is a set of edges that model road segments, and

W is a mapping from edges to positive integer weights that

model road segment lengths. Further, we are given a set of

m customers S = {si}
m
i=1 ⊆ V , and a set of � candidate

facility locations Fp = {fj}
l
j=1 ⊆ V ; each fj ∈ Fp comes

with a capacity constraint cj . Given a cardinality value k, the

problem is to select k candidate facilities F ⊆ Fp, |F | ≤ k
and assign each customer to exactly one facility in F , so that

each selected facility fj ∈ F is at most cj assigned customers

and the sum of network distances between customers and their

allocated facilities is minimized.

We use two binary variables xj and yij ; xj indicates

whether the candidate facility at node vj is selected, j ∈
{1..�}, while yij indicates whether the customer at node vi
is assigned to the facility at node vj . Also, let dij be the

shortest-path distance between vi and vj . Note that dij values

need not define a metric matrix and need not be given as

input; instead, they may be computed on the fly over the input

network, a feature distinguishing our problem setting. Then,

our minimization objective over xj and yij is:

min
xj ,yij

∑
i

∑
j dijyij (1)

subject to:

yij ≤ xj , xj , yij ∈ {0, 1} (2)

∑
j yij = 1,

∑
i yij ≤ cj ,

∑
j xj≤k (3)

Constraint (2) implies that a customer can be assigned to

a node vj where a selected facility is located. The other

constraints stipulate that each customer is assigned to exactly

one facility, a facility vj is matched with at most cj customers,

and k facilities are selected. Table I outlines our notations.
Notation Description

G A weighted graph (network)

E, V Sets of edges and nodes in G
v.dist Distance from considered customer to node v
v.p Potential of node v
dist(v1, v2) The shortest path distance between nodes v1 and v2 in G
S ⊆ V Locations of customers

n Number of nodes in G, n = |V |
m Number of customers

k Number of selected facilities

� Number of candidate facilities

cj Capacity of facility j
Fp ⊆ V Set of candidate facility locations

F ⊆ Fp Selected facilities, |F | = k
Gb Bipartite directed graph between C and Fp

E′ Set of edges in Gb

dij Distance between i-th customer and j-th candidate facility

xj ∈ {0, 1} Indicator of whether fj is in F
yij ∈ {0, 1} Indicator of whether si is allocated to fj
di Demand of a customer si in bipartite graph Gb

σ Assignment ofcustomers to facilities in Gb

σj(Gb) Set of customers assigned to facility fj ∈ Gb

TABLE I: Notations.

III. RELATED WORK

An array of facility location problem variants have attracted

attention for a long time. Farahani and Hekmatfar [4] provide

a comprehensive overview of state-of-the-art algorithms for

several of those variants. These algorithms are mostly based on

linear programming (LP), using LP-rounding and Lagrangian

relaxation as approximation tools. The problem we study is

a network-based version of the nonuniform hard-capacitated

k-median problem [1], [5], [10].

A. Scalable Facility Location

Some recent works consider a special facility location prob-

lem variant, called Optimal Location Query (OLQ) [8], [11]–

[13], which calls to place a single new facility that attracts

the highest amount of customers (the MaxSum objective), or

minimizes the maximum distance between a customer and its

nearest facility (the MinMax objective). OLQ solutions are

based on a Bichromatic Reverse Nearest Neighbor (BRNN)

technique, where each customer is associated with a Nearest

Location Region (NLR), such that each point therein is closer

than the nearest existing facility. To optimize for MaxSum, we

place a new facility in the region with the highest amount of

overlapping NLRs [12], [13]. To optimize for MinMax, we

sort customers by distance to nearest facility, obtain a set of

top-k customers whose NLRs’ intersection is nonempty, and

find an optimal region therein [8].

As the OLQ bears some resemblance to to the MCFS

problem, we could apply it iteratively, as a heuristic, to obtain

a solution to MCFS. Figure 2 illustrates the result of facility

selection by such an approach, employing the intuitively

reasonable MaxSum objective. We start with no facility placed

and select node 1 for the first facility, as it is the one that

minimizes the aggregate distance to customers a, b, c. Dashed

curves in the figure indicate the resulting NLRs for each

795

customer. Node 2 has the highest number of intersecting NLRs

(i.e., attracted customers), so we select it. Yet the optimal

MCFS solution is to select nodes 4 and 5. Thus, unfortunately,

placing facilities by an iterative BRNN-based approach does

not fare well with our optimization objective.

We implemented a BRNN-based approach that sequentially

selects k nodes as facilities, recalculating a set of NLRs at each

step and breaking ties arbitrarily. We include this approach in

our experimental comparison; as we will see, its results are

significantly worse than those of other approaches.

Fig. 2: BRNN application. Fig. 3: Example network G.

B. Bipartite Matching

The MCFS problem implies a bipartite matching of cus-

tomers with facilities. To address this need, we adapt the

Simplified Incremental Algorithm (SIA) [14], [15] from the

case of Euclidean distances to that of network distances.

SIA adapts the Successive Shortest Path Algorithm (SSPA)

[16] to a bipartite graph, enhancing it with an edge pruning

capability, which allows finding a provably optimal matching

after accessing only a few edges adjacent to each node, using

an edge weight threshold derived from node potentials. In

Section V, we enhance this pruning threshold.

IV. THE WIDE MATCHING ALGORITHM

In a nutshell, the Wide Matching Algorithm progressively

enriches candidate facilities with potential serviced customers

until it finds a set of k facilities that can service the full

customer set within their capacities.

A. Algorithm Overview

Throughout the operation of the algorithm, each customer

si maintains an increasing demand value di, reflecting the

number of candidate facilities in Fp it has to be assigned

to. In each iteration, we increase the demand of a chosen

subset of customers and assign each customer with increased

demand to exactly one new facility; while doing so, we may

rewire previous choices, i.e., reallocate previous customer-

to-facility allocations, if beneficial, while observing capacity

constraints. Thereby, customers explore candidate assigned

facilities, though eventually they are allocated to exactly one

of those. We then select a subset F ⊆ Fp, |F | = k, such

that the elements of F collectively cover (i.e., are allocated

to within their capacities) as many customers as possible, by

means of a SET COVER heuristic; this heuristic iteratively

picks a facility that brings the biggest marginal gain to the

number of covered customers. We resolve ties by selecting

the facility f chosen least recently in previous iterations. This

diversification strategy avoids getting trapped in non-optimal

local minima. An exploration vector specifies the increase of

di values per iteration: Δdi is set to 1 if and only if si has

been left uncovered by the set F selected in the previous

iteration and di < �; this choice lets all customers grow their

demand values evenly. The main phase WMA terminates when

it detects a subset F ⊆ Fp that covers all customers in S, or

all demands reach �; the latter case invokes special measures,

which we discuss in Section IV-C.

B. Example

We illustrate the operation of WMA with an example.

Figure 3 shows a network of 9 nodes, ai for customers and

bj for candidate facilities. For visualization’s sake, we do not

place facilities on the same nodes as customers.

Assume we have to place k = 2 facilities, with uniform

capacity c = 2. Figure 4 shows the bipartite graph Gb from

customers to candidate facilities across iterations. Each edge

is weighted by the distance between its adjacent nodes. Table

II depicts part of the adjacency list of Gb with each node’s

three nearest adjacent nodes in ascending order.

a1 b4(1) b2(4) b5(9)
a2 b5(1) b6(2) b3(9)
a3 b1(1) b2(4) b4(9)
a4 b3(1) b2(5) b6(6)

TABLE II: Sample adjacency list for Gb; weights in brackets.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Fig. 4: Bipartite graph Gb through WMA iterations.

First, each customer is matched to its nearest facility in

Figure 4a. Now each of the four facilities covers one customer.

We resolve ties arbitrarily, selecting two facilities out of four,

b4 and b5, and set the exploration vector to Δd = {0, 0, 1, 1}.
In effect, a3 and a4 need to explore the network further.

They do so and both acquire a new match, facility b2,

obeying the capacity constraint c = 2. Thus, by the end of

the second iteration, a1 and a2 have been matched to one

facility each, while each of a3 and a4 has been matched to

two facilities. Now b2 is the most popular facility, in the

sense that it is matched to more customers than any other

facility, namely customers a3 and a4. After discounting these

covered customers, the second most popular facility in terms

of marginal gain is either b4 or b5, bringing a gain of one

customer each, i.e., a1 and a2, respectively. We arbitrarily

select one of the two, b5. At this point a1 is the only uncovered

customer. Hence, we set Δd1 = 1 and Δdi = 0 for the other

three customers, as Figure 4b illustrates.

The third iteration (Figure 4c) demonstrates the benefit of

using an assignment algorithm. Now a1 has a demand to

796

be matched with two facilities, yet its next nearest facility,

b2, has reached its capacity; a greedy approach would then

match a1 to b5, the next nearest available facility. Rather than

doing so, our matching algorithm rewires previous choices,

i.e., reconsiders previous allocations and substitutes them with

new ones, if beneficial: in particular, it reassigns a4 to b6 so

that it can assign a1 to b2. The newly used b6 along with b2
collectively cover a1, a3, and a4. Now a2 is uncovered, and

hence Δd2 = 1. Eventually, the fourth iteration matches a2 to

b6. Now two facilities, namely b2 and b6, cover all customers,

as Figure 4d shows, with objective value 16.

C. Algorithm Outline

WMA operates on a complete directed bipartite graph

between customers and candidate facilities, and progressively

satisfies demand and capacity constraints by bipartite match-

ing. This operation can be time consuming on a complete

graph, while previous work has not considered bipartite

matchings among nodes anchored in a network. Still, we

effectively transfer a pruning technique for bipartite matching

with Euclidean distances [14], [15] to a network setting.

The core idea is this: if we can ascertain that there is no

possible beneficial reassignment that would match node ai to

bj , we can eschew bj from consideration. To ascertain that,

we do not need to know the exact weight of edge (ai, bj); it

suffices to know that bj is farther than another possible match,

bk. We can expand knowledge of such weights incrementally

on demand, running an instance of Dijkstra’s algorithm on G
per customer in each iteration.

Algorithm 1 outlines WMA. In each iteration, we first try

matching with current customer demands (Lines 4–5); then

we check whether we can select a set of facilities F that

cover all customers (Line 6); if we cannot, we raise demands

appropriately (Lines 7–8). Lines 10–11 cover the special case

where there exists a set F such that |F | < k and F already

covers all customers. In that case, we locate the remaining

k − |F | facilities in the vicinity of customers with the most

unsuccessful assignments; this measure retains coverage and

improves the cost objective. Algorithm 4 in Section IV-G illus-

trates this process. In case the k selected facilities fail to cover

some customers even after their demands reach �, Lines 12–13

revise F ensuring it suffices to cover all customers, i.e., all dis-

connected network components. Algorithm 5 in Section IV-G

provides the details. Eventually, Lines 14–15 call the same

process recursively, setting the demand of each customer to

1, so as to build a single optimal-cost assignment, σ(Gb), of

customers to the k selected facilities in F ; the edges in σ(Gb)
outgoing from a selected facility fj define the set of customers

σj(Gb) matched to fj .

WMA maintains two graphs throughout its operation: first,

the input network G that contains locations of customers and

candidate facilities; second, the bipartite graph Gb, used for

extracting assignments among those entities. Edge weights

in Gb reflect shortest-path distances between customers and

facilities in G. We assume that a single facility can be located

on any network node; the algorithm can be straightforwardly

extended to any restrictions on such placements by tuning the

candidate facility nodes in Gb.

Algorithm 1 Wide Matching Algorithm

1: function LOCATEFACILITIES(G,S, Fp, k)

2: Gb ← Bipartite empty graph based on G
3: di = 1 ∀i
4: repeat

5: for all si ∈ S : di > |{fj |si ∈ σj(Gb)}| do

6: Gb ← FINDPAIR(Gb, si)

7: {F,Δd, covered} ← CHECKCOVER(Gb, k)
8: d← d+Δd
9: until ∀i Δdi = 0

10: if |F | < k then

11: SELECTGREEDY(F,G)

12: if not covered then

13: F ← COVERCOMPONENTS(S, F,G)

14: if |Fp| > k then

15: return LOCATEFACILITIES(G,S, F, k)
16: else

17: return F, σ(Gp)

D. Matching Function

Let us discuss the matching function that iteratively assigns

new customers to facilities in Gb and reassigns previously

matched pairs. The complete bipartite graph Gb has �·m edges,

where each edge requires an execution of Dijkstra’s algorithm

for its weight calculation. For large problem instances, that

would cause excessive computation. Therefore, we add edges

to Gb only on demand.

We initialize Gb with two sets of nodes: customers and fa-

cilities, without edges. We add edges progressively, running a

variant of the Successive Shortest Path Algorithm (SSPA) [16]

with node potentials; such potentials encapsulate the goodness

of the current arrangement for a node in question, so that we

can calculate the benefit of updates involving that node. The

process terminates when we can guarantee that the running

matching is optimal in the complete Gb. The SSPA solves the

Minimum-Cost Flow problem (to which bipartite matching is

reduced) using iterative Dijkstra executions from a source to

a sink, and flow augmentation. In our problem, the source is a

customer s, the sink is the closest non-fully occupied facility

in Gb; flow augmentation amounts to substituting an edge with

one of opposite weight (given that a customer can be matched

to each facility only once). SSPA guarantees optimality by

adding new edges in an order sorted by weight: it maintains

the running weight of the next candidate edge to be taken

into consideration, and derives a threshold indicating whether

that weight can affect the current solution. We discuss this

threshold in Section V. We achieve this order by one Dijkstra

execution per customer, yielding distances to candidate facil-

ities in non-decreasing order; such distance values give the

weights of new edges in Gb.

Algorithm 2 presents the pseudocode for matching a cus-

tomer in Gb and updating the running assignment by rewiring

797

as necessary. The loop of Lines 4–12 adds edges to Gb until

it can accept a new match for the given customer. In each

iteration, we run a Dijkstra instance on Gb (Line 8), to find a

shortest path in Gb from the given customer s to the nearest

usable (i.e., not fully occupied) facility; this Dijkstra instance

works with weights reduced by potential values v.p, and it

returns the found path and the set of visited nodes. We add

each visited node v to a heap with a threshold value that we

justify in Theorem 1 (Section V). This threshold depends on

the distance from v to its next nearest neighbor in the network

graph G (nnDist), the distance from customer to v in Gb

(v.dist), and a potential value v.p (Lines 9–11). When the

condition in Line 12 is satisfied, we can proceed to update the

running bipartite assignment.

Algorithm 2 Matching Function

1: function FINDPAIR(Gb, s)

2: heap← empty heap

3: heap.add(〈s, 0〉)
4: repeat

5: x← heap.topKey

6: nn← node in Gb for next NN of x in G
7: add edge (x, nn) to Gb

8: {path, visited} ← DIJKSTRA(s)
9: for all v ∈ visited ∩ S do

10: nnDist ← distance to next NN of v in G
11: heap.add(〈v, v.dist + nnDist − v.p〉)

12: until path.length < heap.topValue
13: for all e ∈ path do

14: e← −e � Reverse edge

15: w(e)← −w(e) � Reverse edge weight

16: for all v ∈ visited do

17: v.p← v.p+ path.length − v.dist

18: return Gb

WMA runs two independent Dijsktra instances: one on the

bipartite graph Gb (Line 8) for the sake of updating its running

assignment and another on the network graph G (Line 10) for

the sake of incrementally calculating edge weights on Gb. As

both operate over graphs, they require no spatial index. The

path found in Line 8 contains a new match, while observing

capacity constraints. Then, the loop of Lines 13–15 performs

flow augmentation: it increases the flow value by 1 along this

path and performs necessary assignment and reassignment

actions. Line 17 adjusts potential values.

One execution of the Matching Function assigns exactly one

facility to one customer. The flow augmentation in SSPA is

constrained only by the target’s capacity and edge capacities;

therefore, it is possible to augment flow by more than one in

some cases. However, we do not need to do so, as we need not

ever match the same customer with the same facility again. As

we want many customers to be assigned to each facility, we

set the capacities of edges in Gb to 1; thus, whenever time a

customer is assigned to a candidate facility by FINDPAIR, the

flow is increased by 1.

E. Set Cover Routine

The need check whether we can select a subset F that

covers all customers raises a SET COVER problem. As this

problem is NP-hard, we employ a heuristic solution. After each

iteration, we rank all candidate facilities by their (dynamically

updated) marginal gains and greedily select the top-k. If our

selection covers all customers, WMA terminates. Algorithm 3

illustrates this approach. We place all candidate facilities in a

heap, organized on the number of customers they cover, and

extract facilities from the heap one by one, checking whether

all customers served by the last extracted facility f remain

uncovered. If so, we include the facility in our selection.

Otherwise, we recalculate that facility’s marginal gain and put

it back in the heap. If we reach k facilities without achieving

full coverage, we have not yet reached termination.

Algorithm 3 Checking top-k facilities

1: function CHECKCOVER(Gb, k)

2: heap ← empty heap

3: for all fj ∈ Fp do

4: fj .m← |σj(Gb)|
5: heap.add(〈fj , fj .m〉)

6: F ← ∅, ∀i Δdi ← 1
7: for γ ∈ {1..k} do

8: fj ← heap.top
9: m′ ← |σj(Gb)|

10: if fj .m �= m′ then

11: fj .m← m′

12: heap.add(〈fj , fj .m〉)
13: else

14: F ← F ∪ fj
15: for all {si|si ∈ σj(Gb) ∨ di = �} do

16: Δdi ← 0

17: if ∀iΔdi = 0 then

18: return F , Δd, true

19: return F , Δd, false

F. Updating Demands

A crucial operation in WMA is the update of customer

demands. A simple approach would increase the demand of

all customers by 1 in each iteration. We have found that it

is much more effective to increase the demand by 1 only for

those customers that were not covered in the last iteration.

This selective increase introduces those uncovered customers

to more facilities, increasing the chances that they get covered

sooner rather than later. Further, we keep track of how recently

a facility has been used in a previous iteration to break ties

between facilities that incur equal marginal gains.

G. Special Provisions

We have noted that Algorithm 1 (Section IV-C) makes

provisions for two special cases: the case in which fewer than

k facilities already cover all customers, and the one in which k
facilities fail to cover some customers even after their demands

reach �. Here we describe these provisions.

798

Algorithm 4, called in Line 11 of Algorithm 1, provides the

former special provision: it selects additional facilities until

|F | = k. Each iteration of the main loop adds to F a new

facility f∗ ∈ Fp\F that is nearest to the customer s having the

highest current distance to the nearest facility in F . Thereafter,

Lines 14–15 in Algorithm 1 build an assignment using the

enlarged F , yielding improved cost.

Algorithm 4 Greedy addition of facilities

1: function SELECTGREEDY(F,Gb)

2: while |F | < k do

3: s∗ ← argmaxs{minf∈F dist(s, f)|s ∈ S}
4: f∗ ← argminf{dist(s

∗, f)|f ∈Fp \ F}
5: F ← F ∪ f∗

Algorithm 5 provides the latter special provision: it receives

a set of selected facilities F as input and replaces facilities

therein to ensure that each connected component of G is

allocated sufficient capacity to cover all its customers. Line 3

calculates the difference g.p between the collective capacity

of selected facilities that are within connected component g,

which we denoted as the set Fg , and the number of customers

in g, |Sg|. A positive value of g.p indicates that the facilities

allocated to g by F suffice to cover the customers therein,

with some possible reallocation. A negative g.p means that

component g should be offered more facilities or facilities

with higher capacities. The loop in Lines 4–9 runs as long as

a component with negative g.p exists, substituting the lowest-

capacity selected facility f in the highest-g.p component gM
with the highest-capacity unselected facility in the lowest-g.p
component gm. Theorem 3 proves that, if a solution exists,

this loop terminates.

Algorithm 5 Selecting facilities that cover all customers

1: function COVERCOMPONENTS(S, F,G)

2: for all g – connected components of G do

3: g.p←
∑

fj∈Fg
cj − |Sg|

4: while ∃g : g.p < 0 do

5: gm ← argming{g.p}
6: gM ← argmaxg{g.p}
7: f ← argminfj{cj |fj ∈ gM}
8: F ← (F \ {f})∪ argmaxfj{cj |fj ∈ gm, fj /∈ F}
9: Update g.p, g′.p

10: return F

V. MATCHING OPTIMALITY

Here, we prove that the FINDPAIR routine of Section IV-D

yields an optimal assignment, even while using a simpler

pruning criterion than the one in [15].

The sets of customers S = {si} and facilities Fp = {fj}
form the two sets of nodes in bipartite graph Gb. E′

f is the

complete set of all possible edges of Gb, while E′ is the set of

edges that we are choosing to add to Gb. Also, dist(si, fj) is

the weight of edge (si, fj) ∈ E′
f ; by the definition of Gb,

dist(si, fj) is the shortest-path distance between customer

si and facility fj in graph G; v.dist denotes the length of

the shortest path sp from customer to node v found by

Dijkstra on Gb, and v.p the potential of v; there is one Dijkstra

execution for each FINDPAIR call.

An assignment is optimal if �{si, fj} ∈ E′
f \E

′, such that

adding (si, fj) to E′ would yield a better assignment. Notably,

each call of FINDPAIR(Gb, s) updates the running assignment

as soon as it finds in E′ a shortest path sp from customer s to a

non-fully occupied facility. Then the assignment is optimal iff

E′
f contains no other path sp′, from s to a non-fully occupied

facility, such that sp′.length < sp.length [15].

Line 12 of Algorithm 2 verifies this optimality condition.

Once the condition is satisfied and the loop is over, the assign-

ment is defined for a current E′, and the flow augmentation

phase follows.

Theorem 1: Let sp be the shortest path from customer to

a non-fully occupied facility in E′ and

sp.length ≤ min
i,j
{si.dist+ dist(si, fj)− si.p}. (4)

Then sp is the shortest path from customer to a non-fully

occupied facility in E′
f .

Proof: The Dijkstra’s algorithm call in Line 8 of Algo-

rithm 2 adjusts edge weights by node potentials to remove

any negative cycles created by flow augmentation. The original

weight of an edge (v1, v2) is w(v1, v2) = dist(v1, v2), while

its reduced weight is

wr(v1, v2) = dist(v1, v2)− v1.p+ v2.p, (5)

where dist(v1, v2) is the distance between v1 and v2 on G.

The length of any path in Gb found by Dijkstra is calculated

as the sum of reduced weights. Since ∀v v.p ≥ 0, Equation

(4) implies that

sp.length ≤ min
i,j
{si.dist+ dist(si, fj)− si.p+ fj .p}. (6)

Due to Equation (5), Equation (6) means that

sp.length ≤ min
i,j
{si.dist+ wr(si, fj)} (7)

Now, assume another path sp′ from customer to a non-fully

occupied facility exists that is shorter than sp and includes

at least one edge (s′, f ′) ∈ E′
f\E

′. Then the length of sp′

includes the reduced weight of the edge (s′, f ′):

sp′.length ≥ s′.dist+ wr(s
′, f ′) (8)

Yet after edge (s′, f ′) is included in Gb, tautologically,

s′.dist+ wr(s
′, f ′) ≥ min

i,j
{si.dist+ wr(si, fj)} (9)

By Equations (8), (9), and (7), we get a contradiction:

sp′.length ≥ min
i,j
{si.dist+ wr(si, fj)} ≥ sp.length (10)

In contrast, the threshold used by U et al. [15] is:

sp.length ≤ min
i,j
{si.dist+ dist(si, fj)} − τ ′max (11)

τ ′max = max{s.p|f.dist ≤ min
i,j
{si.dist+dist(si, fj)}} (12)

The bound we employ is tighter in case the minimizing

s in Equation (4) has s.dist > min
i,j
{si.dist + dist(si, fj)}

and s.p > τmax. Besides, this τmax-based threshold burdens

Algorithm 2 with the overhead of maintaining τmax.

799

VI. ANALYSIS OF WMA

Theorem 2: The worst-case complexity of WMA is:

O(m|E| log n+m2�2(log(�+m) + k log �)) (13)

Proof: The matching function of WMA finds a usable

facility by iteratively adding new edges to Gb. To that end, it

maintains a heap of at most m candidate edges. In the worst

case, the heap has to be fully rebuilt at each iteration. If the

candidate facility reached by the Dijkstra call on Gb does not

satisfy the optimality criterion in Line 12 of Algorithm 2, the

loop reiterates. This condition can be violated only if there

exists an edge that should be added to E′. As Gb has at most

m� edges, the Dijkstra result can be invalidated at most m�
times. Thus, Dijkstra’s algorithm is called at most m� times.

With a heap-based implementation of Dijkstra applied on a

sparse connected graph, the complexity is O(|E′| log(m+�)),
where |E′| grows iteratively from 0 to m�. While Dijkstra’s

algorithm runs on Gb with every FINDPAIR() call, we also run

another Dijkstra instance on the graph G for each customer.

New edges in E′ result from successful executions of that

instance, while the heaps for these executions per customer

persist across FINDPAIR() calls. This gives an additional

O(m|E| log n) complexity. The combined complexity is:

O(m|E| log n+m2�2 log(m+ �))

CHECKPOPULAR() builds a heap of all reached candidate

facilities in O(� log �). At each greedy iteration, we check

the top value of the heap and update it if needed. In the

worst case, we may update the whole heap. In total, we do k
greedy steps and return false if no set cover is found within

the top-k facilities. Then the complexity of the set cover

routine per iteration is O(k�(log �+m)), where m stands for

checking whether all customers are covered. The total number

of iterations is m · �, since, in the worst case, we increase the

demand of only one customer by 1 in each iteration. Putting

it all together, the total worst-case time complexity is:

O(m|E| log n+m2�2(log(�+m) + k log �))

As our experiments document, WMA performs far below

this worst-case complexity thanks to its pruning ability.

Theorem 3: WMA provides a correct solution if one exists.

Proof: The main loop in Algorithm 1 terminates when

no Δdi is increased, i.e., when a set cover is found or all

uncovered customers reach demand di = �. In both cases,

it selects a set of facilities F with cardinality |F | ≤ k; if

|F | < k, Algorithm 4 amends it so that |F | = k. Algorithm 5

revises F to ensure that all disconnected components of G
are allocated sufficient capacity. Let kg be the minimum

number of facilities required to cover all customers Sg within

component g, kg = minF ′{|F ′| :
∑

fj∈F ′ cj ≥ |Sg|, F
′ ∈ g}.

A solution to MCFS is feasible if and only if the budget k
suffices to allocate to each component g at least kg facilities,

i.e., iff
∑

g kg ≥ k. Algorithm 5 proceeds towards a state

where each component g is allocated a set of top-kg facilities

in terms of capacity values. Therefore, if a solution is feasible,

it eventually terminates. Last, the recursive call in Algorihtm 1

produces an optimal bipartite assignment from customers to

facilities that does not violate any capacity constraint.

Fig. 5: Randomly scattered points used to generate networks.

VII. EXPERIMENTS

Given the impracticality of approximation algorithms [5],

we compare WMA vs. an optimization solver, the Gurobi Opti-

mizer [3], and three simple baselines. Our implementations are

in C++. We run all experiments on a 2.2 GHz AMD Opteron

6376 machine with 512GB RAM running Ubuntu 14.04.

A. Baselines

The first baseline follows an approach as in [17]: it divides

the input customer set into k buckets and assigns each bucket

to the candidate facility node closest to the bucket’s centroid.

We form buckets containing �m/k� consecutive customers

using the spatial order defined by a Hilbert space-filling

curve [18]. We denote this baseline as Hilbert. The second

baseline is a BRNN-based method that iteratively selects

k nodes, calculating NLRs at each step; it then runs SIA

to produce a final assignment from customers to selected

facilities and obtain the objective value. The third baseline is a

simplified version of WMA, WMA Naı̈ve. Instead of using an

exact bipartite matching, WMA Naı̈ve uses a greedy procedure

to satisfy customer demands: in each iteration, it processes

customers in a randomly generated order and assigns each

customer to its closest di candidate facilities that have not yet

reached their capacities.

B. Datasets

We use synthetic and real-world networks. Our real-world

data are road networks in Aalborg, Riga, Copenhagen, and

Las Vegas, obtained from OpenStreetMap1. Table III provides

statistics. We report objective values and distances in meters.

Aalborg Riga New Copenhagen Las Vegas

Nodes 50,961 287,927 282,826 425,759

Edges 55,748 322,109 322,349 508,522

Avg degree 2.2 2.2 2.2 2.4

Max degree 7 29 10 21

Avg edge length 30.2 28.7 32.6 50.4

TABLE III: Real-world data sets.

We create synthetic graphs by placing points on a 103×103

square. We use two distributions, uniform and clustered. In the

clustered case, we place cluster centers uniformly at random.

We then assign an equal number of points to each cluster,

and form a Gaussian distribution for each cluster with the

center as mean and σ2 = 1
number of clusters

. We connect pairs of

points with an edge if they are closer than α 1√
n

, where α is a

1 https://www.openstreetmap.org/

800

(a) m �0.1n, k �0.1m, c �20, α �2 (b) m �0.2n, k �0.5m, c �4, α �2 (c) m �0.1n, k �0.5m, c �10, α �1.2 (d) Multicapacities, c ∈ [1..10]

Fig. 6: Results on uniform distribution, variable graph size.

tunable density parameter and n is the network size in nodes.

We connect cluster centers to each other in a clique and assign

edge weights equal to Euclidean distances. Figure 5 presents

examples of such distributions for 104 points given 40, 20, and

5 clusters, and a uniform distribution. On synthetic networks,

we select customer locations uniformly at random. A solution

is feasible only if there is enough total capacity to serve all

customers, i.e.,
∑k

j=1 cj ≥ m; in the uniform case, c ≥ �m
k
�,

while an occupancy value, defined as o= m
c·k ≤ 1, indicates

how close we are to full capacity.

C. Experiments with Uniform Synthetic Data

We first evaluate performance on uniform data when varying

the graph size. We set Fp = V , meaning that a facility can be

placed on any node in a graph. We present results for Gurobi

for instances where it completed within 24 hours. When it

does not complete in 24 hours, we say that it fails.

In Figure 6a, we use density α=2, which corresponds to an

average of two adjacent edges per node. We randomly assign

customers to 10% of all nodes and set k=0.1m; hence, we

need to place facilities at 1% of all nodes; we set capacities to

c=20, yielding o=0.5, i.e., capacities are twice the minimum

required size. BRNN performs significantly worse than others,

so we eliminate it from further consideration. The objective

values attained by Hilbert, WMA, and Gurobi do not differ

significantly, with WMA performing almost as well as Gurobi.

This is because this dataset has a simple uniform structure;

Hilbert handles it well, even without taking network distances

in consideration. However, Hilbert deviates from WMA as

data size grows. WMA exhibits a far more scalable runtime

trend than Gurobi, which failed on network sizes beyond 8,192

nodes; WMA scales no less gracefully than Hilbert as the data

size grows. WMA Naı̈ve has similar runtime to WMA, yet its

objective value is more than double that of WMA across the

parameter range.

Figure 6b shows results for a similar configuration, but with

higher customer and facility density. Here, we set capacities

to c = 4 and again obtain an occupancy of o = 0.5. Results

are similar to the previous ones, though the divergence of

objectives between Hilbert, WMA, and WMA Naı̈ve is more

pronounced. Further, the achieved objective values are smaller

for all algorithms due to higher density (the y-axis range has

changed). Gurobi’s runtime overhead has increased, as the

runtime of LP is highly dependent on the number of variables

and constraints; the other algorithms are less sensitive to those

parameters. Now the runtime of WMA eventually matches that

of Hilbert, even while delivering significantly better quality.

WMA Naı̈ve is faster than Hilbert on larger networks with

higher customer and facilitiy densities, as it eliminates the

time-consuming bipartite matching step of WMA.

Figure 6c presents a case with a sparser and less connected

network, with α = 1.2, more similar to real road networks.

Customer and facility densities lie between those of the pre-

vious two cases, with customers as in Figure 6a and facilities

as in Figure 6b. We set c=10, resulting in an occupancy of

o = 0.2; this makes the problem relatively easier, balancing

out the effect of network sparsity. Even so, the disconnected

network structure makes an optimal solution hard to find.

Thus, Gurobi’s runtime is significantly higher than in the

previous case, although the number of decision variables is

smaller and the occupancy is looser. WMA also has a higher

runtime, and its objective value is closer to that of Hilbert, and

similar to that in Figure 6a, where we have half the customers

with half the facilities, meaning that the cumulative distances

remain relatively stable. Hilbert also has almost the same

objective as before, as it considers each component separately,

calculating required facilities per component proportionally to

the number of customers in the component. On a graph with

many small components, this approach quickly leads to good

results. As in previous experiments, as the scale increases,

WMA Naı̈ve becomes faster than Hilbert.

We also experiment with nonuniform capacities. Figure 6d

shows the results with settings like those for Figure 6c, except

that now each node is assigned a uniformly random capacity

in the range 1 to 10. Hilbert selects locations first, as if ca-

pacities were uniform, and then assigns customers to facilities

according to nonuniform capacities using bipartite matching.

We observe a similar trend: WMA steadily outperforms Hilbert

and WMA Naı̈ve, while Gurobi struggles in terms of runtime.

801

(a) m �0.05n, k �0.1m, c �20 (b) m �0.01n, k �0.8m, c �5 (c) m �0.05n, k �0.2m, c �20 (d) m �0.1n, k �0.1m, c �20

Fig. 7: Results on Clustered Distribution vs. size, α = 2, 20 clusters in (a,b,c), 5 in (d)

(a) n �104, m �103, k �103, c �15, α �2 (b) c �10, n �104, k �200, α �1.5 (c) n �104, k �128, o �0.1, α �1.5 (d) n �104, m �103, α �1.5

Fig. 8: Results on Clustered Distribution, 20 clusters. Variable �, m, and k.

As the problem becomes harder, the gap between the optimal

solution provided by Gurobi, and that provided by our heuristic

slightly increases in comparison to Figure 6c. The runtime of

WMA Naı̈ve is now higher than those of Hilbert and WMA,

as it becomes harder for its greedy heuristic to find a set cover

when facilities have irregular tight capacities.

D. Experiments with Clustered Synthetic Data

We now turn to clustered synthetic data. Here, the α
parameter no longer corresponds to the average number of

adjacent edges per node, as distances between nodes depend

on the standard deviations of Gaussian distributions. We tune

this deviation so that clusters cover the plane.

Figure 7 shows results for variable network size settings.

These results highlight the advantage of WMA further, as the

differences between network and geometric distances become

more pronounced with clustered data. Hilbert fails to spot good

facility locations, as those depend on the network structure.

WMA Naı̈ve stands as an outlier with significantly worse

results. In terms of runtime, WMA exhibits similar trends as

with uniform distributions.

Figures 7a, 7b, and 7c present experiments with highly

clustered points. Figure 7a has more customers and relaxed

capacity constraints. WMA provides a good tradeoff between

effectiveness and efficiency, with both objective and runtime

in-between Hilbert and Gurobi. In this experiment we include

BRNN, observing that it also underperforms with clustered

data; thus, we again omit it from subsequent figures. Figure

7b depicts results for a smaller occupancy and a smaller

capacity. WMA performs more similar to Hilbert, though still

outperforming it. Figure 7c shows a different low-occupancy

setting. WMA and Hilbert yield smoother curves, showing a

clear trend. Yet, the problem becomes more challenging for

WMA as size grows.

Figure 7d shows results for a case with 5 clusters, coming

closer to a uniform distribution, and occupancy o = 0.5. Here

the clustering-based approaches perform well, with Hilbert

becoming almost as good as WMA.

Now we consider the effects of varying the major problem

parameters other than network size with clustered data.

1) Variable number of candidate facility locations: On a

clustered graph of size n = 104, we randomly pick Fp,

varying its size from 40% to 100% of all nodes. Figure 8a

presents our results, using dense customer distribution and

high capacity. Gurobi failed for Fp sizes above 60% of all

nodes. Hilbert is sensitive to the size of Fp due to its clustering

nature. In contrast, both WMA variants show stable runtime

and objective, with the regular WMA achieving objective

values very close to those of Gurobi. This indicates that WMA

finds good alternatives in case some nodes are not candidate

facilities, while Hilbert falters.

802

2) Tuning Customers and Facilities: Figures 8b and 8d

present our results when varying the numbers of customers and

facilities, respectively. The objective increases as the number

of customers grows, but drops as the number of facilities

grows, other parameters being equal. Remarkably, the runtimes

of the WMA variants drop with increasing facilities as well,

as they perform fewer iterations. Figure 8c scales up the

amount of customers, also allowing for multiple customers per

node, with occupancy of o = 0.1. WMA slightly outperforms

Hilbert, and both are very close to Gurobi in terms of objective.

WMA Naı̈ve shows worse results. Gurobi fails for large

numbers of customers.

3) Effect of Graph Density α: We now study the effect

of graph density α with 5-cluster data. Figure 9a shows the

results. As α affects the average degree, the x-axis shows

the measured average degree instead of α, resulting in non-

equal parameter gaps. The objective improves for WMA with

larger degree, coming closer to the optimal solution by Gurobi

and outperforming Hilbert and WMA Naı̈ve. WMA finds

better locations as optimal facilities become available within

fewer hops, thereby simplifying the set cover sub-problem.

Gurobi is surprisingly stable, showing that a network with no

throughput constraints on edges is resistant to intermediate

density increase.

(a) n �104, m �1000, k �300 (b) n �104, m �1000, k �100

Fig. 9: Effect of Density (c=10), Capacity c (α = 1.5).

4) Effect of Capacity c: Last, we vary capacity values as

Figure 9b shows. The capacity has little effect on the result

quality, except in the challenging case of very small capacity,

where the occupancy is high. This is reasonable: once a good

matching is achieved for some capacity, letting capacity grow

further does not improve the solution. Remarkably, While

other algorithm have stable runtime, Gurobi gains in efficiency

as capacity grows, rendering the optimization easier.

E. Experiments with Real Data, Uniform Capacities

Now we turn our attention to the performance of WMA

on real-world data, using four urban road network data sets of

different size. We first examine the uniform capacity case with

Fp = V . We distributed 512 customers randomly in each city

network, and tasked the algorithms with placing 51 facilities.

We could only obtain results for WMA and Hilbert, as Gurobi

did not terminate on such data within one week due to the large

number of candidate facility locations.

Table IV presents quality and runtime results. WMA

achieves a solution that is around 30% better than the most

competitive Hilbert basline on all cities except Las Vegas.

Las Vegas has a regular grid-like road network structure (see

Figure 1a), rendering clustering approaches more effective;

thus, we obtain only a 9% improvement.

BRNN Hilbert WMA Naı̈ve WMA

Aalborg 3.51 / 1 min 0.59 / 10 s 0.83 / 5 min 0.41 / 5 min

Riga 6.02 / 6 min 1.30 / 5 min 1.86 / 3.0 h 0.90 / 3.3 h

Copenhagen 4.20 / 6 min 0.93 / 5 min 1.29 / 3.7 h 0.66 / 5.9 h

Las Vegas 3.67 / 6 min 1.16 / 13 min 1.63 / 12.4 h 1.06 / 7.5 h

TABLE IV: Objective [·106] / Runtime, m � 512, k � 51, c � 20, l �n

Further, we test the scalability of WMA on the Aalborg

network, for growing number of both customers and facilities,

with fixed occupancy o = 0.5, c = 20, and setting k = 0.1m.

Figure 10 shows that the advantage of WMA manifests itself

as the numbers of facilities and customers grow: its runtime

is aligned with that of Hilbert, and it scales well with the

problem size, while the quality improves continuously over

that of Hilbert. WMA Naı̈ve achieves a worse objective

than WMA, although it is competitive in terms of runtime.

Interestingly, as both WMA variants struggle to find a feasible

set cover with sparse customers and facilities, their runtimes

are at their lowest in middle problem sizes. Further, we ran

BRNN on this real-world data set in order to reexamine the

conclusions reached on synthetic data. The objective of BRNN

grows rapidly, indicating its instability on real-world tasks. In

addition, BRNN presents the worst runtime behavior, as it has

to repeatedly calculate NLR intersections. Last, Gurobi failed

in these experiments.

Fig. 10: Aalborg experiment, o = 0.5, � = n = 50961

F. Experiments with Real Data, Nonuniform Capacities

We now consider real-world data with nonuniform capaci-

ties and � < n, which corresponds to the most general case of

the MCFS problem. The problem is to select a set of facilities

among diverse options, each associated with a capacity derived

from real-world constraints. We study two applications: (i) the

selection of meeting places for coworkers, and (ii) the selection

of bike docking stations.

1) Coworking: this trend allows independent professionals

to share a working environment [19], saving expenses for

office rental while enjoying the advantages of the structure

803

and community of working with others [20]. In addition,

coworking spaces enable group meet-ups and other temporary

activities. Cafés and restaurants provide affordable coworking

options, offering part of their spaces during non-rush hours.

We let city amenities serve as facilities, while their daily op-

erational hours define their nonuniform capacities. Assuming

uniform utilization during these working hours, a number of

coworkers need to select coworking facilities out of potential

options. We consider this problem on data from two cities:

Las Vegas and Copenhagen.

a) Las Vegas case: We use Yelp2 data

to generate a distribution of customers from

known facility occupancy, using an existing

technique [13]; we divide space to Voronoi

cells, and each cell to triangles, as illustrated

on the figure to the right. The number of customers in a

triangle is:

mΔ = Oi ·
(
ω · Oj∑

j
Oj

+ (1− ω) · AreaΔ

Area∪Δ

)

,where Oi is the occupancy of the central node, Oj is the

occupancy of a neighbor node, AreaΔ is the area of a

triangle, Area∪Δ is the area of the Voronoi cell, and ω is

a parameter set to 0.5 by default [13]. We use user check-ins

available from Yelp, considering all restaurants as candidate

facility locations, and derive a customer distribution. Instead

of using Euclidean Voronoi cells, we adapt the approach to

road networks via network distance calculations. We then

generate customer numbers proportional to derived values.

We place 1,000 customers at appropriate road network nodes

using this method. We downloaded the road map data from

OpenStreetMap, and we identified 4089 venues with available

operational hours in the Yelp dataset. Figure 1a shows the

distribution of customers and facilities in the city center.

b) Copenhagen case: We use data from the “Open Data

København” portal3. We generate a customer distribution

proportional to that of district populations in Copenhagen,

and randomly place 200 customers at road network nodes.

We obtained information about cafés and restaurants from

OpenStreetMap; 164 venues have operational hours available

(the average is 9 hours in both cities), which we use as a

proxy for a venue’s capacity. Figure 1b shows the distribution

of customers and facilities in the city center.

We solve the problem in two ways: (i) the Direct solution,

whereby WMA accommodates the given nonuniform capaci-

ties and proceeds as usual; and (ii) the Uniform First (UF)

solution, where we first solve the problem as if capacities

were uniform using the average capacity, and then reassign

customers to facilities using the real nonuniform capacities in a

single bipartite matching step. This alternative might represent

a better heuristic, in case it detects better locations under

uniform capacities, before specializing to the nonuniform ones;

this is a conjecture worth investigating.

Figures 12a and 13a show our results on the Direct and UF

versions of WMA, the optimal solution provided by Gurobi,

2 https://www.yelp.com/dataset/ 3 http://data.kk.dk/

and the three baselines — Hilbert, BRNN, and WMA Naı̈ve.

Since WMA Naı̈ve yields poor quality vs. WMA, we do not

include results for its UF variant for the sake of readability. As

more facilities can be used to satisfy the given demand, the

problem becomes easier. Since we use a small Fp, Gurobi

solves the problem in reasonable runtime; that would not

be so if we had more candidate facilities or a country-scale

network. For both cities, WMA outperforms Gurobi’s runtime

by several order of magnitude and matches its quality. UF

WMA meets the optimal solution as well in most cases.

The accuracy of Hilbert improves with increasing number of

facilities, replicating the trend observed with synthetic data

(Figure 8d). WMA Naı̈ve shows a better objective than Hilbert,

as also witnessed in Figure 8a: Hilbert cannot adapt to a small

Fp, leading to objectives as bad as BRNN; BRNN has even

worse runtime than Gurobi in the Copenhagen case.

(a) Selection of meeting places (b) WMA Profiling

Fig. 12: Las Vegas experiments.

(a) Selection of meeting places (b) Bike docking case study

Fig. 13: Copenhagen experiments.

We also report statistics on the operation of WMA for

selection of meeting places in the Las Vegas network with

k = 600. Figure 12b shows 3 quantities: covered customers

at the end of each iteration, time for matching, and time for

the set-cover operation. The set-cover time is lower than the

matching time except for later iterations where reassignment

804

is minimal. Most customers get covered within the first few

iterations. The matching time in the first iteration, where

WMA performs a matching of all nodes, is one order of

magnitude larger than in subsequent ones, where it just updates

nodes affected by increased demands. The growing number of

covered nodes shows how WMA explores the network.

2) Dockless Bike Sharing: In our second use case, a

customer can leave a bike at any place after using it, in-

stead of placing it at predefined docking stations. The rapid

growth of companies such as Mobike4, oBike5, and Ofo6

illustrates the popularity of this business model. Still, these

companies suggest using “preferable” bike docking stations.

Periodically, a service gathers dispersed bikes and distributes

them to such stations to enhance the ease of access to bikes.

We study the case of dockless

bike sharing in Copenhagen, us-

ing data from the “Open Data

København” portal again. We de-

termine the locations of 6,000

bike docking stations and their

capacities (shown in the figure to

the right). We assume that a new

bike sharing company may be licensed a subset of available

stations. Our task is to select an appropriate set of k bike

docking stations (i.e., facilities), observing capacities.

Fig. 15: Copenhagen bike traffic

We generate a distribution of scattered bikes (i.e., cus-

tomers) using aggregate daily bike traffic counter data. A bike

traffic counter is a point with known coordinates that records

the number of bikes passing by in each street direction per

hour. Given this information and the default street directions

provided by OpenStreetMap, we derive a vector function of

bike flow per hour, 	g. Figure 15 shows the color-encoded mag-

nitude and sign of 	g, where the sign indicates the direction of

the flow with respect to default street directions. We calculate

the divergence ∇	g = ∂gx
∂x

+
∂gy
∂y

at each network node, which

expresses the number of bikes that get parked at that node

during an hour. We repeat this operation for each hour in

a day and obtain the variance of ∇	g across hours at each

node, which is a proxy for bike docking demand at that node.

Normalizing these variance values, we obtain a probabilistic

distribution of bike docking demand across nodes. We place

1000 bikes in the city following this distribution.

Figure 13b presents the results on bike docking station

selection. UF WMA fares slightly worse than WMA, while

both outperform the baselines and almost match Gurobi.

4 https://mobike.com/ 5 https://www.o.bike/ 6 http://www.ofo.so/

VIII. CONCLUSION

We introduced the problem of Multicapacity Facility Selec-

tion in a network and presented the first, to our knowledge,

algorithm that offers solutions of high quality and scales

to large problem instances, the Wide Matching Algorithm

(WMA). WMA iteratively builds careful, expanding alloca-

tions of customers to usable candidate facilities and terminates

when it detects a feasible solution within those allocations. As

it can handle both uniform and nonuniform capacities, WMA

provides a viable solution for selecting facilities under any

capacity constraints. Experiments on synthetic and real-world

data demonstrate that WMA is able to solve realistic problem

instances; scales gracefully with network size, supply, and

demand; outperforms simple baselines in solution quality; and

offers competitive quality with respect to the optimal solution.

REFERENCES

[1] L. A. Lorena and E. L. Senne, “A column generation approach to
capacitated p-median problems,” Computers & Operations Research,
vol. 31, no. 6, pp. 863–876, 2004.

[2] M. R. Korupolu, C. Plaxton, and R. Rajaraman, “Analysis of a local
search heuristic for facility location problems,” J. Algorithms, vol. 37,
no. 1, pp. 146–188, 2000.

[3] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2016.
[Online]. Available: http://www.gurobi.com

[4] R. Farahani and M. Hekmatfar, “Facility location: Concepts,” Models,

Algorithms and Case Studies, Heidelberg: Physica-Verlag Heidelberg,
2009.

[5] S. Li, “On uniform capacitated k-median beyond the natural LP relax-
ation,” in SODA, 2015, pp. 696–707.

[6] ——, “Approximating capacitated k-median with (1 + ε)k open facili-
ties,” in SODA, 2016, pp. 786–796.

[7] ——, Private Communication, 2018.
[8] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long,

“Optimal location queries in road networks,” ACM Trans. Database

Syst., vol. 40, no. 3, pp. 17:1–17:41, 2015.
[9] K. Deng, S. W. Sadiq, X. Zhou, H. Xu, G. P. C. Fung, and Y. Lu, “On

group nearest group query processing,” IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 2, pp. 295–308, 2012.

[10] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey, “The Uncapacitated
Facility Location Problem,” Discrete Location Theory, pp. 119–171,
1990.

[11] B. Yao, X. Xiao, F. Li, and Y. Wu, “Dynamic monitoring of optimal
locations in road network databases,” The VLDB Journal, vol. 23, no. 5,
pp. 697–720, 2014.

[12] F. Chen, H. Lin, Y. Gao, and D. Lu, “Capacity constrained maximizing
bichromatic reverse nearest neighbor search,” Expert Systems with

Applications, vol. 43, pp. 93–108, 2016.
[13] E. Yilmaz, S. Elbasi, and H. Ferhatosmanoglu, “Predicting optimal

facility location without customer locations,” in KDD, 2017, pp. 2121–
2130.

[14] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis, “Capacity
constrained assignment in spatial databases,” in SIGMOD, 2008, pp.
15–28.

[15] L. H. U, K. Mouratidis, M. L. Yiu, and N. Mamoulis, “Optimal
matching between spatial datasets under capacity constraints,” ACM

Trans. Database Syst., vol. 35, no. 2, pp. 9:1–9:44, 2010.
[16] U. Derigs, “A shortest augmenting path method for solving minimal

perfect matching problems,” Networks, vol. 11, no. 4, pp. 379–390, 1981.
[17] S. Mitra, “Identifying top-k optimal locations for placement of large-

scale trajectory-aware services,” VLDB 2016 PhD Workshop, 2016.
[18] I. Kamel and C. Faloutsos, “Hilbert R-tree: An improved R-tree using

fractals,” in VLDB, 1994, pp. 500–509.
[19] A. Gandini, “The rise of coworking spaces: A literature review,”

Ephemera : Theory and Politics in Organization, vol. 15, no. 1, pp.
193–205, 2015.

[20] B. Neuberg, 2017. [Online]. Available: http://coworking.com

805

