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Abstract—The diffusion of information and influence in net-
works shapes ideas, habits, and behaviors. Several diffusion con-
trol methods have been proposed to harness, maximize, limit, or
direct such diffusion processes in desirable ways. State-of-the-art
algorithms for prescriptive fine-grained diffusion control rely on
simple models, most prominently the Independent Cascade (IC)
model, rather than on advanced machine learning approaches.
The simplicity of such models can be an advantage. Yet, to exploit
this advantage, one needs not only well-designed algorithms,
but also a powerful model-training framework that yields well-
informed models. Unfortunately, much research effort has been
devoted to algorithm design, while the development of techniques
for informing the underlying model has been largely neglected.

We propose a new content analysis workflow that derives
realistic IC model parameters for diffusion control algorithms.
We rely on a log of user text messages to derive a measure of
similarity among those messages, and therefrom calculate the
probability that one node influences another. We evaluate our
model in terms of its predictive power and apply it to two
representative diffusion control problems under the IC model.
Our results showcase the capacity of our methods to make correct
predictions, and provide the first, to our knowledge, study of
diffusion control problems with a real-world probability model.

I. INTRODUCTION

Network diffusion. Phenomena of diffusion in networks

involve the spread of information, attitudes, or infections.

Some of those phenomena are captured by the Independent
Cascade (IC) model [1], which is has been applied in prob-

lems such as Influence Maximization (IM) [2], [3] and Node

Immunization (NI) [4]. The IM problem asks to find a set of

k nodes in a network that maximizes the expected spread of

a diffusion starting out from these nodes. On the other hand,

the NI problem asks for a set of nodes that, if removed, would

minimize the expected spread a diffusion emanating from

some other source. These problems arise in social network

analysis, viral marketing, and epidemiology [5], [6].

IC parameters. The IC model requires a single proba-

bility value that describes the influence between two nodes

that are connected in the network. Seed nodes are initially

active. Once any node is activated, it tries to activate (in-

fluence) its neighbors, and succeeds with the corresponding

edge probability. The assessment and exploitation of diffusion

control methods requires an accurate estimation of IC model

probability parameters, as these probabilities may emphasize

network localities. For example, as Zhang et al. [7] show, in

real-world networks, the retweeting probability is negatively

correlated to the amount of social circles a user belongs to,

i.e. the number of friends that do not know each other. Such

effects are hardly captured by synthetic models.

IC training Despite the wide usage of the IC model, the

question of its training has been poorly covered. Some works

train the IC model based on a set of actions. For instance,

Saito et al. [8] learn model parameters using an expectation-

maximization approach, applied on a set of references to a

particular topic in a blogging platform. Netrapalli et al. [9]

use such approach to learn graph parameters and the graph

itself. Goyal et al. [10] suggest a more scalable approach to

learn model parameters; they define a propagation probability

between two adjacent nodes as puv = Av2u

Atotal
, where Av2u is the

number of alike actions performed by v and then by u, and

Atotal is the total number of actions performed either by v (Av),

or by both users (Au|v); they apply this solution on a dataset

of Flickr accounts, where actions are group subscriptions.

Content-aware IM Other works [11], [12] introduce

content-aware variants of the IM problem. Most pertinently,

Barbieri et al. [11] apply content analysis to the topic-aware IC

model, a generalization of the IC model where the propagated

item (e.g., a piece of news) is associated with a topic vector.

Likewise, each edge is associated with a vector of influence

probabilities, calculated in terms of actions of its adjacent

nodes. The activation probability over an edge depends on

its topic closeness to thr propagated item, defined in terms

of the item’s topic vector and common interests of adjacent

nodes. Still, the topic-aware IC model assumes topics are

the ultimate cause of influence across network nodes. This

model cannot infer influence due to the relationship among

nodes. For example, a user subscribed to a news source she

trusts will tend to be influenced by that source, regardless

of topic. In this case, content analysis is useful for inferring
influence (i.e., the user posts messages of content similar to

that of posts by the trusted source), yet the inferred influence is
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(a) BA Graph (b) VK Graph

Fig. 1: Synthetic (left) and Real-World (right) Dataset

due to topic-independent factors. To our knowledge, there has

been no attempt to train the IC model based on such general

inferences from the content of exchanged messages, where

items belonging to the same cascade may not be identical.

Frequent flow paths. Subbian et al. [13] study the problem

of mining flow paths in a graph having frequency above a

threshold f ; thus, their focus is not to extract probabilities

of flow across each edge, but to identify sequences of nodes

across which information flows frequently.

Influence prediction Some works use richer models than

the basic IC to deliver better prediction of influence. Cheng

et al. [14] use message and user features to predict the size

and shape of cascades by machine learning. Liu et al. [15] use

Gibbs sampling to train joint probabilities of influence between

users as well as between items, modeled as distinct types of

nodes in a heterogeneous network. Wang et al. [16] use an

embedding model and apply Maximum Likelihood Estimation

for prediction, using the network structure for regularization.

However, these prediction models are inapplicable with mod-

ern diffusion control algorithms, as they do not scale to the

computations such algorithms rely upon, and violate those

algorithms’ assumption of edge-based influence independence.

In this paper, we propose an end-to-end framework, that so

far has been missing, for the extraction of accurate, general-

purpose, topic-independent influence probability values from

the real-world content of user text messages. We start out with

a topic vector representation of messages, similarly to previous

works, yet consider circumstances in which, in a propagation

trace, the content of a reposted message has no reference

information and is not identical to, but merely similar to, the

original. We emphasize that we do not propose some new

model with better prediction power than others; instead, we

propose a new learning framework for the existing, widely

used IC model, so as to enhance the real-world applicability

of IC-based diffusion control algorithms, and conduct the first,

to our knowledge, experimental study of such algorithms under

model parameters trained by real-world interactions.

II. FRAMEWORK

The Independent Cascade (IC) model captures a diffusion in

a network. Let G = (E, V ) be a directed graph, where nodes

correspond to users of a social network and edges correspond

to subscriptions. A node can be in active or passive state. Each

edge is associated with a probability p : E → (0, 1), which

indicates how likely it is that the source influences the target.

Information propagates in discrete time stamps ti. Nodes that

are active at t0 are called seeds. If a node v becomes active

at ti, then for each (v, u) ∈ E such that u is not yet active,

u becomes active at ti+1 with probability p((v, u)). We train

the IC model by assessing similarities on a log of posts, using

tokenization and morphological analysis, as follows.

A. Data Collection

We use the VKontakte (VK)1 social network. A profile in

VK represents either a single user, or a community page (a

group). The VK API allows to query only public data of active

profiles. A profile can subscribe to another profile. A mutual

subscription is called a friendship. We model profiles as nodes

in a social graph. Each profile has a wall — a blog with posts.

A post may contain a text message, pictures, audio, video,

or documents. We use text message contents to derive post

similarity, and ignore all attachments. A post is labeled by

publishing time, author, content, and a history of reposts. A

repost is a post that refers to another post; a post can refer

only to one other post; the referred post appears on the wall

of the repost author, along with content by the author. We

do not concatenate the texts of all reposts, yet we define

all reposts to be similar to original posts by default. Yet, as

only 0.2% of all downloaded posts are reposts, we can not

use reposts for influence probability learning. Therefore, we

calculate message similarity based on content. We query the

following information about profiles:

• Information about a profile, incl. state (active or inactive).

• The list of subscribers of a profile.

• The latest 100 posts from the wall of a profile, including

a history of reposts; reposts may belong to any network

profile, including closed or deleted ones; this limit is due

to VK API’s constraint on a query to a profile’s wall.

We query groups and users independently. We initiate the

database with a few random nodes, and continue to query

nodes on first-come-first-served basis, whereby new node IDs

come from the retrieved lists of friends/subscribers. For those

nodes with known lists of friends, we queried the latest posts.

After retrieving several thousands of nodes, we change the

approach so as to enhance graph connectivity. First, we query

a detailed information about a set of profiles. We then query

lists of friends and posts for publicly available profiles with

more than 10 connections; we filter those with less than 10

connections to reduce data sparsity. Then we go through a

process in which we iteratively collect profile ids by a priority

queue, increasing the score of a node v by 1 each time v
appears as a friend of a user in the previous set, and by 2 if

v has authored any repost from the previous set.

Eventually, we extract a list of nodes, each having a full

friend list and wall available and appearing in at least another

node’s friend list, amounting to 5.6 · 105 nodes and 1.5 · 108
edges; 14% of those are user profiles, while others are group

profiles; groups are more likely to set public profiles. We select

nodes having at least 5 posts and pick the largest weakly

connected component to obtain a graph of 2452 nodes, 28108
edges, and 106, 217 posts; the graph, depicted on Figure 1b,

1 https://vk.com/
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(a) Degree Distr. (b) Message Length (c) Term Frequency (d) Message Sim. (e) Probability Distr. (f) AUC

Fig. 2: Dataset statistics

has clustering coefficient [17] 0.121 and mean degree 22; its

degree distribution appears in Figure 2a.

B. Probability Extraction

We used as tokens morphological word lemmas obtained

by MyStem2 [18]; we ignore unrecognized words, e.g., URLs

and smileys, and omit stopwords with the NLTK library [19].

Figure 2b shows message length distribution before and after

preprocessing; in VK there is no character limit.

To calculate the similarity of posts, we need a term similar-

ity measure. We considered two such measures: (i) the Jensen-

Shannon divergence of term co-frequency, suggested in [20];

and (ii) a skip-gram model [21] pretrained on Wikipedia,

provided by FastText3. FastText utilizes word stem information

to represent words that are not in the training data. Figure 3

shows the correlation among these two measures, based on

pairwise cosine similarities, by on two measures, among a

random sample of terms. We see that there is no much

correlation. Table I shows examples of some of the most

similar (translated) terms according to FastText. Based on the

observation of such examples, we opted for FastText.

Fig. 3: Term sim.

Term 1 Term 2 Similarity
mess up curl up 0.7704

pour knead 0.7066
economic sociological 0.6649

button shirt 0.6308
fanatic aggressive 0.6113

TABLE I: FastText sim. examples

Next, we consider two ways to calculate post similarity:

(i) AVG [22], the cosine similarity among the averages of

term vectors in each post; (ii) enriched TF-IDF [20], which is

tailored for embeddings of short messages, as it amplifies the

entry for a term w in the tf-idf vector of a message m using

all terms w′ present in m, weighted by similarity to w:

tf-idfw,m = 1−Πw′(1− tfw′,m · idfw′ · p(w|w′))
where p(w|w′) is the cosine similarity between term embed-

dings, given by FastText. We applied a minimum document

frequency (cut-off) of 0.001%, and a maximum document

frequency of 1%, yielding 6.6 · 104 terms. Figure 2c presents

term frequencies. The minimum frequency filters words that

appear too rarely to influence message proximity, while the

maximum frequency indicates words that appear too often,

and are therefore unlikely to reflect specific context. Figure 2d

juxtaposes the two post similarity approaches on a random

2 https://tech.yandex.ru/mystem/ 3 https://fasttext.cc/

sample of 1000 posts; in this case, as opposed to the case of

term similarity in Figure 3, we observe a high correlation. We

opt for enriched TF-IDF as the more refined approach.

Eventually, we calculate edge probabilities by scanning the

log of posts. We define influence probability as puv = Av2u

Av
,

where Av2u is the number of posts by user v that are similar
to an earlier post by u. We consider a pair of posts A from u,

B from v, as similar only if (i) A satisfies a content similarity
threshold τ with respect to B, i.e., cos (tf-idfA, tf-idfB) ≥ τ ,

(ii) A precedes B by at most one month, and (iii) no earlier

message B2 from v satisfies τ with respect to A, and no later

post A2 from u satisfies τ with respect to B; in other words,

we assume a user is influenced by a post only once. Figure 2e

shows the resulting probability distribution.

For each post m and each neighbor of its author, we

consider the existence of a similar post m′ on the neighbor’s

wall as a positive instance of propagation. We use a cutoff

threshold θ ∈ (0, 1) to determine our probabilistic predictions

of propagation. Scanning the log of posts, as in [10], we derive

True Positive and False Positive Rates for all values of θ,

TPR = TP
TP+FN , FPR = FP

FP+TN . We evaluate the quality

of the trained probability model by the Area Under Curve:

AUC =
∫

TPR dFPR. Figure 2f presents AUC values for

different content similarity thresholds τ . We select τ = 0.994,

which maximizes AUC (0.9062), as the default τ . Filtering

zero-probability edges, under the chosen τ , yields a network

of 2094 non-isolated nodes, which we use henceforward.

III. APPLICATIONS

Here, we investigate the behaviour of real-world VK data in

comparison to synthetic data generated by the Barabási-Albert
(BA) model (Figure 1a) that simulates a power-law degree

distribution, on two problems: Influence Maximization (IM),

where the objective is to maximize expected spread of selected

seeds, and Node Immunization (NI), where the objective is

to select nodes to block/remove so that the expected spread

of some seeds is minimized. We consider the data-aware NI

problem, where seeds are known in advance [4]. We use the

algorithm of Holme and Kim [23] that extends the original

BA model, selecting parameters so that the BA graph has

the same number of nodes and edges, and similar degree

distribution (Figure 2a) and clustering coefficient (0.101) as

the VK graph. We evaluate expected spread by 10,000 Monte-

Carlo simulations. We also use a synthetic probability model,

the trivalency model that randomly select low (0.01), medium

(0.05) or high value (0.1), applied to both VK and BA data,

and an exponential model on BA data, generating probabilities

by the probability density function 1
c exp(−x−μ

c ), where c and
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(a) VK (b) BA (c) Δrel =
IMM−Degree

Degree (d) VK (e) BA (f) Δrel =
NetShield−DAVA

NetShield

Fig. 4: Results on IM vs. seeds s (a-c); NI vs. blocked nodes k (d-f); Real (RP), Expon. (EP) and Trivalent (TP) prob.

μ are parameters fit to probability distribution of the VK data.

The code and the resulting VK dataset are available4 online.

A. Influence Maximization

We apply the IMM algorithm [24] with accuracy parameter

ε = 0.1 and the Degree heuristic [2] on the IM problem.

Figures 4a-c show our results on different networks and proba-

bility models. Δrel shows the relative performance gap among

two algorithms. Revealingly, on VK data, the performance of

IMM deviates from that of the naive degree heuristic more

with real probabilities than with trivalency (Fig. 4a), while on

synthetic graphs, it deviates more with trivalency (Fig. 4b, 4c).

B. Node Immunization

Node Immunization can be solved in a data-aware manner,

when seeds are known in advance, or preemptively, when

they are not. We use the state-of-the solution for each case:

DAVA [4] accepts a seed set S (calculated by IMM) as input

and builds an NI solution informed by domination relation-

ships among nodes with respect to S; it calculates the benefit
of removing a node as γ(v) = 1 +

∑
u∈children of v γ(u) · pvu,

where pvu is the probability that influence propagates along

the most probable path from v to u. NetShield [25] blocks

preemptively a set of nodes, S, maximizing the Shield value:

Sv(S) =
∑

i∈S
2λu(i)2 −

∑

i,j∈S
A(i, j)u(i)u(j)

where λ and u are the largest eigenvalue and the corresponding

eigenvector of the network’s adjacency matrix A. A set S has

high Sv if its elements have high eigenscore u(i) and are

not connected to each other (zero A(i, j)). A high eigenscore

implies that their removal leads to a significant eigen-drop

Δλ. Figures 4d-f present our results with these algorithms,

with |S| = 100. Remarkably, DAVA outperforms NetShield in

limiting spread all cases except with trivalency on VK. As in

IM, using trivalency we overestimate the lead of the state-of-

the-art algorithm on BA, and underestimate it on VK.

IV. CONCLUSIONS

We presented a framework for extracting influence probabil-

ities for the independent cascade model, using textual content

analysis and a vector representation of messages in a network.

We showed that our trained model has good prediction power,

and applied it experimentally on two network diffusion prob-

lems, influence maximization (IM) and network immunization

(NI), with real-world and synthetic networks. Juxtaposing

results obtained with probabilities derived by our framework to

those obtained by synthetic ones, we find that state-of-the art

4 https://github.com/iconvk/LearningIndependentCascadeOnVK

algorithms for IM and NI express their lead with real-world

probabilities on real-world networks; the use of a synthetic

probability model amplifies that lead on synthetic networks but

distorts it on real networks, especially in node immunization.
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