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On the Robustness of Diffusion in a Network
under Node Attacks
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Abstract—How can we assess a network’s ability to maintain its functionality under attacks? Network robustness has been studied
extensively in the case of deterministic networks. However, applications such as online information diffusion and the behavior of
networked public raise a question of robustness in probabilistic networks. We propose three novel robustness measures for networks
hosting a diffusion under the Independent Cascade or Linear Threshold model, susceptible to attacks by an adversarial attacker who
disables nodes. The outcome of such a process depends on the selection of its initiators, or seeds, by the seeder, as well as on two
factors outside the seeder’s discretion: the attacker’s strategy and the probabilistic diffusion outcome. We consider three levels of
seeder awareness regarding these two uncontrolled factors, and evaluate the network’s viability aggregated over all possible extents of
an attack. We introduce novel algorithms from building blocks found in previous works to evaluate the proposed measures. A thorough
experimental study with synthetic and real, scale-free and homogeneous networks establishes that these algorithms are effective and
efficient, while the proposed measures highlight differences among networks in terms of robustness and the surprise they furnish when
attacked. Last, we devise a new measure of diffusion entropy, and devise ways to enhance the robustness of probabilistic networks.

Index Terms—Graphs and networks, Stochastic processes, Reliability and robustness
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1 INTRODUCTION

Networks are ubiquitous in the modelling of infrastruc-
tures [1], [2], social interactions [3], [4], [5], physical and life-
science phenomena [6], [7]. Yet such networks are subjects to
failures or attacks [8], whereby some of their elements may
be disabled or removed. The impact of such structural al-
terations on network performance depends on the desirable
features of a network’s operation in a particular application.

Network robustness is the ability of a network to retain
critical features of its topology and functionality in the face
of uncertainty regarding its components. Quantitative mea-
sures of robustness express the degree to which a network
retains such features despite attacks [9].

Deterministic robustness. Some measures of network
robustness gauge the change of a deterministic graph
property after random failures. The measured property may
be the network’s diameter, average path length [10], or
inverse shortest path length [11]. A critical measure is the
size of the largest connected component (LCC) [10], [9], uses
in domains from power grids [6] to biological systems [7].
Such analysis is grounded on percolation theory [12], which
studies problems such as the dependence of a network’s
largest cluster on node failure probability and predicts

phase transitions, i.e., rapid and cardinal changes of
network affordance when a parameter reaches a critical
value.

Stochastic robustness. In applications such as infor-
mation diffusion and epidemiology, there is uncertainty
regarding the connections in the network, i.e., the network
is stochastic. In this paper, we study the operation of such a
stochastic network under targeted node failures (or, equiva-
lently, attacks on nodes), expressed as the expected number
of activated (or infected) nodes under some parameters of
a diffusion process. We refer to this type of robustness as
probabilistic network robustness. Despite the extensive study
of deterministic network robustness [13], its probabilistic
counterpart has been only scantily studied. There are stud-
ies on how to engineer some kind of robust diffusion in
an uncertain or adversarial environment [14], [15], but an
investigation on how robustness is to be measured in such
environments is missing.

In this paper, we study network robustness expressed
as the capacity to carry out a successful diffusion under
node attacks. We introduce three robustness measures built
around two sources of uncertainty: attacks on nodes and
probabilistic diffusion outcomes on edges.

In more detail, our main contributions are the following:

1) We define the concept of network robustness under ad-
versarial node attacks (Section 2.2), which represents
the capability of a network to host a diffusion pro-
cess starting from some seeds under the independent
cascade and linear threshold models;

2) We introduce the notion of seeder awareness and
propose algorithms to measure network robustness
under different awareness levels (Section 3);

3) We utilize, and enhance the runtime of, recent so-
lutions to the problem of Robust Influence Maximiza-



tion [14] so as to compute the effects of node attacks
(Section 3.2.3);

4) We enhance the DAGGER [16] reachability index and
use it in the case where the seeder is aware of
network outcomes (Section 4);

5) We measure the robustness of scale-free and ho-
mogeneous, synthetic and real-world networks, in-
vestigate interrelationships among the robustness
measures we propose, and suggest ways to enhance
probabilistic network robustness (Section 5).

This paper comprises an extended version of our confer-
ence paper on the same subject [17].

2 BACKGROUND

Processes in large networks, such as electricity flow, package
routing, and protein delivery, are vulnerable to attacks. Such
events may cause electricity blackouts [18] or epidemics [19].
There is a need to gauge the extent of such effects and
design protection mechanisms. Network robustness assesses
the impact of a network alteration on such processes.

2.1 Deterministic Robustness of Integrity
Network robustness reflects a network’s ability to maintain
its connectivity under attacks [20]. The connectivity of an
undirected network is measured by the expected size of its
largest connected component (LCC) after an attack [20], also
defined on probabilistic undirected networks [21].

The study of robustness under random failures is inspired
by results of percolation theory, which describes the physics
of phase transitions [12], [22] in systems such as magnets,
fluids [12], and proteins [23]. A phase transition occurs
when certain network parameters pass a critical thresh-
old [22]. Percolation theory examines the expected maximum
size [22] of a cluster made of particles in the same active
state, as with the spontaneous magnetization of the Ising
magnet [12], [24]. An example of the critical threshold is
the Molloy-Reed criterion [22], by which a giant component
appears in a general graph if 〈k

2〉
〈k〉 > 2, where 〈·〉 denotes

expectation and k denotes a node’s degree. The Molloy-
Reed criterion shows that scale-free networks are extremely
robust to random node failures, while being vulnerable to
targeted node attacks [25]; increasing their robustness against
targeted attacks conflicts with maintaining their robustness
against random failures [22]. Some robustness measures
take into consideration both random and target failures, yet
do not provide a method to achieve high robustness in those
terms [26]. Schneider et al. [6] propose a local-search heuris-
tic that rewires edges so as to increase an inclusive measure
of robustness against targeted attacks, while maintaining
node degrees. Such an inclusive measure considers all cases
of a malicious attack or failure, including those in which the
network does not collapse but suffers a big damage [6]. The
heuristic in [6] leads to an onion-like graph structure, with
nodes of similar degree tending to be connected to each
other. A LCC-based measure of robustness under random
edge failures is the reliability polynomial [27]:

Rel(G) =
m∑
i=1

Fi(1− p)ipm−i

where m is the number of edges, Fi is the number
of sets of i edges whose removal leaves G connected,
and p is an independent probability that an each edge is
present. Denoting the probability that an edge is absent
as x = 1 − p, we derive an equivalent definition [27],
Rel(G) =

∑m
i=1Rm−ix

i(1 − x)m−i, where Rm−i is the
number of connected subgraphs made of m− i existing
edges. The closely related problem of securing connectivity
between two predefined node sets under edge failures is
known as network reliability problem [28].

To the best of our knowledge, the only previous work
studying networks where both nodes and edges are subjects
to failures is the study of percolation in infinite networks by
Chayes and Schonmann [29], which derives inequalities that
bind the critical values of edge failures, node failures, and
the network’s maximal degree. However, there is no notion
of an attack in [29]. We study the robustness of stochastic dif-
fusion processes under node attacks; this notion of robust-
ness generalizes the robustness of deterministic networks
under targeted node attacks and random edge failures.

2.2 Stochastic Robustness of Diffusion
Network robustness also refers to a network’s capacity
to host a diffusion process despite the exclusion of some
network elements [30], [31], [14], [22]. The mathematical
modelling of diffusion is independent of semantics: it may
be a diffusion of information, a cascading failure, or a viral
infection epidemic [18]. Similarly, a node attack is mathemat-
ically equivalent to a node immunization or failure. As the
effect of node attacks is evaluated by a stochastic process, we
formulate the corresponding concept of stochastic robustness.

A diffusion may be epidemic, threshold, or cascading [32].
There are two popular epidemic models [33]: By the SIS
model, nodes are either susceptible or infected; By the SIR
model, it may recover and becomes immune. The expected
size of an SIR epidemic starting at u is equal to the expected
size of the connected component that contains u [34]. Epi-
demic models typically consider a homogeneous infection
rate, yet two models study information diffusion with het-
erogeneous rates [35]: the Independent Cascade (IC) model
(a special case of SIR [36]) and the Linear Threshold (LT)
model [37], [3]. By these models, the Influence Maximization
(IM) problem [37] seeks a set of initially active nodes (seeds)
that maximizes the expected number of activated nodes.

2.3 Robustness under the IC and LT models
The IC and LT models are used to study word-of-mouth
effects in social networks [3]. A diffusion proceeds in dis-
crete time steps. At time t = 0, a set of seed nodes S ∈ V
are activated. By the IC model, any node v activated at
time t tries to activate its out-neighbours at time t + 1,
and succeeds with an independent probability pe = puv for
each neighbor u. In case of success, the edge e is active.
By the LT model, each node v picks a random threshold
ν ∈ [0, 1], and is activated only if

∑
u∈in-neigh(v) puv > ν; in

such a case, only one of the incoming edges is considered
active [37], selected randomly according to the assigned
edge probabilities. This cascading process ends when there
are no more trials for activation. The set of active nodes
and edges at the end of this process forms a deterministic
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live-edge graph g [37], conditioned on the outcomes of the
random choices. The spread, or expected number of activated
nodes, is the expected number of nodes reachable from S.

Problems related to our work are those of sensitivity to
edge perturbations [38] and robust influence maximization (RIM)
under edge perturbation [15] or any adversarial source of
uncertainty [14]. Given a finite set of adversarial strategies
Θ, the objective in [14] is:

max
S,|S|≤k

min
θ∈Θ

σθ(S)

σθ(S∗θ )
(1)

where σθ(S) is the spread achieved by seed set S under
strategy θ, S∗θ is the optimal seed set for θ, and k is a
budget constraint; the normalization by σθ(S

∗
θ ) measures

the fraction over optimal influence; an absolute measure is
used with continuous θ in [39].

The Saturate Greedy (SatGreedy) algorithm [14] solves
the RIM problem by targeting the cumulative effect of all
strategies, which is a submodular objective. This algorithm
provides a bi-criteria approximation guarantee: violating the
budget constraint k by an O(k ln |Θ|) factor leads to an (1−
1
e ) approximation of the optimal solution. We adopt the RIM
objective as a component in one of our measures.

3 MEASURES OF DIFFUSION ROBUSTNESS

We propose three robustness measures, anchored on the
awareness of a seeder, who selects seed nodes, on node
attacks and diffusion outcomes. Table 1 lists our notations.

Stochastic graph with nodes V and edges E G = (V,E)
Number of nodes and edges of G n,m

Deterministic graph sampled from G g ∼ G
Edge probability parameter W

Set of attack strategies removing ` nodes Θ(`) = {θi(`)}
Degree of a node v d(v ∈ V )

Number of blocked (removed) nodes `
Reachability indicator function I(v, S)

`-sampling parameter α
EMR-RNI D

Expected number of activated nodes σ
Seed set S and size of seed set k S, k = |S|

Number of active nodes I
Fraction of active nodes ν = I/n

Assortativity coefficient [40] r

TABLE 1: Notations

3.1 Attack Strategies

We measure robustness against an attacker who disables
nodes. A consideration of all possible attack strategies
amounts to the NP-hard problem of node immunization [41],
[31], [36], [42]. We rather demarcate a strategic set of at-
tack strategies on a directed stochastic network G, ΘG =
{θiG} [14]; θiG(`) is a set of ` nodes in G chosen by strategy
θiG; gθ denotes the graph obtained by removing nodes from
a deterministic instance g of G according to θiG(`). We opt
for strategies that are also node ranking functions, i.e., each
strategy defines a node order. We select six strategies that
represent each type and cluster in [43], plus a spectral-based
baseline, NetShield [36], [31], [44], [45]:

1) Degree picks nodes with the largest degree;
2) Random picks seed nodes uniformly at random;
3) Acquaintance [46] picks a random node’s neighbor;
4) PageRank ranks nodes by PageRank values [47];

5) Katz centrality [48] equals xi = α
∑
jAijxj + β,

where α = 0.1, β = 1, and A the network’s
adjacency matrix.

6) Betweenness centrality is the sum of the fraction of
all-pairs shortest paths that pass through a node.

7) NetShield greedily selects a set of nodes S, aiming to
maximize its Shield value:

Sv(S) =
∑
i∈S

2λu(i)2 −
∑
i,j∈S

Aiju(i)u(j)

where λ and u are the largest eigenvalue and the
corresponding eigenvector of the adjacency matrix
A containing edge probabilities; λ indicates the
effectiveness of a stochastic spread in the network.
The algorithm works on undirected networks; we
transform any network to undirected by ignoring
directions and removing duplicates.

3.2 Awareness-based Robustness Measures
We distinguish three levels of seeder awareness regarding at-
tacks and diffusion events and define one robustness notion
for each seeder awareness level.

3.2.1 EMR
Assume an omniscient seeder with access to an oracle that
predicts the outcome g of a diffusion on G and of an
attack on g that produces gθ . As discussed in Section 2.1,
the robustness of a deterministic undirected network G
can be expressed in terms of the largest connected compo-
nent (LCC) [20]. When G is a directed network, the LCC-
equivalent substructure is either of the largest strongly or
weakly connected components [49]. Still, none of these LCC
generalization expresses the maximum number of nodes a
seeder can reach. We denote the number of nodes that a
seeder can reach in an immunized live-edge instance of
a directed network, gθ , with a diffusion from a seed set
S of size k, as

∑
v∈gθ I(v, S); I(v, S) is a binary function

indicating whether there exists a path from S to node v.
Maximizing the sum amounts to finding a maximum forest
with at most k roots. Let Expected Maximum Reach (EMR) be
the expected number of nodes an omniscient seeder reaches
in G under the worst θ ∈ Θ(`):

EMRG(`) = min
θ∈Θ(`)

Egθ∼G

[
max
S:|S|≤k

∑
v∈gθ

I(v, S)

]
(2)

Our first robustness measure aggregates EMRG(`) for
all sizes ` of an attack, normalized by network size; we call
it sum of expected maximum reach or SEMR:

SEMRG =
1

n

n∑
`=1

EMRG(`) (3)

We introduce a novel algorithm for SEMR computation
in Section 4 and study its efficiency in Section 5.6.

3.2.2 RNI
We now consider an informed seeder lacking knowledge
of diffusion outcomes, but having access to an oracle that
predicts node attacks. The maximum number of nodes such
a seeder can expect to reach in G under the worst-case
attack strategy θ is the maximum, over all cases of S, of
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the expected size, over all instances gθ ∼ G, of the number of
nodes v ∈ gθ to which a path exists from S. A strategy
θ ∈ Θ(`) that minimizes this quantity yields the Robust
Network Immunization (RNI) measure:

RNIG(`) = min
θ∈Θ(`)

max
S:|S|≤k

Egθ∼G

[∑
v∈gθ

I(v, S)

]
(4)

Our second robustness measure aggregates RNIG(`)
over all `, normalized by network size. We call it SRNI :

SRNIG =
1

n

n∑
`=1

RNIG(`) (5)

The computation of SRNI requires solving an influence
maximization (IM) problem on a graph with θ(`) nodes
removed for each attack strategy θ ∈ Θ and each value
of `. We do so while building sampled networks gθ incre-
mentally, using the Dynamic IM algorithm (DIM) [50].

3.2.3 RIM

Last, we consider an agnostic seeder who has information
neither on diffusion outcomes, nor on node attacks. The
best such a seeder can do is to try to solve a problem of
robust influence maximization [14]. The worst-case number
of nodes such a seeder can expect to reach in a stochastic
network G with seed set S is the minimum, over all attack
strategies θ ∈ Θ(`), of the expected size, over all instances
gθ ∼ G, of the number of nodes v ∈ gθ to which a path
exists from S. The seeder should opt for a seed set S
that maximizes this worst-case quantity, yielding the Robust
Influence Maximization (RIM) measure:

RIMG(`) = max
S:|S|≤k

min
θ∈Θ(`)

Eg∼G

[∑
v∈gθ

I(v, S)

]
(6)

While inspired from Equation 1, RIM is based on node
removals rather than edge perturbation, and is not nor-
malized by the optimal spread for a given gθ , gauging
robustness in the absolute sense. Our third measure, SRIM,
aggregates RIMG(`) for all `, normalized by network size:

SRIMG =
1

n

n∑
`=1

RIMG(`) (7)

To calculate SRIM, we apply SatGreedy [14] with the ob-
jective in Equation 1 modified to account for node removals
and normalizing spread by network size |V | rather than by
the optimal spread under strategy θ:

max
S

ρ′(S) = max
S

min
θ

σθ(S)

|V |

We enhance the runtime of SatGreedy using the same
dynamic approach as for SRNI [50]. We also consider the
baselines proposed in [14]: SingleGreedy selects k seeds se-
quentially, maximizing the objective in each step; AllGreedy
finds the best seed set for each adversary, and selects the
one of these that maximizes the objective.

3.2.4 Summary
Our three measures form a sequence, tuning the seeder’s
awareness regarding the sampling of g and the application
of an immunization strategy θ to g by means of two choices:
the order of max and min determines whether the seeder
is aware of the immunization strategy; the positioning of
expectation E indicates whether the seeder is aware of the
sampling of g. Table 2 depicts the relationships among the
three measures with respect to these key properties. ne case
in the table is not covered by the hitherto described mea-
sures, namely the case corresponding to an unaware seeder,
yet with a strategy chosen posterior to the sampling of g. We
call this measure EMinR (Expected Minimum Reach):

EMinRG(`) = max
S:|S|≤k

Eg∼G

[
min
θ∈Θ(`)

∑
v∈gθ

I(v, S)

]
(8)

strategy-aware seeder agnostic seeder
sampling first RNI (Eq. 4) RIM (Eq. 6)

seeds first EMR (Eq. 2) EMinR (Eq. 8)

TABLE 2: Relationships between robustness measures.

4 COMPUTATION OF SEMR
The algorithms for SRNI and SRIM computation discussed
in Sections 3.2.2 and 3.2.3, respectively, were based on exist-
ing solutions. In this section, we introduce a novel algorithm
for SEMR computation.

To compute SEMR for a single seed, we need to find the
expected maximum tree sizes over a sequence of network
samples g ∼ G under each attack strategy θ ∈ Θ. We
consider attack strategies θ such that the set of blocked
nodes under strategy θ for ` + 1 is a superset of that for `,
i.e., θ(`) ⊂ θ(` + 1). To obtain a sequence of attack sets
θg(`) for different values of ` on g, it suffices to sequentially
remove nodes from g. Equivalently, since we are interested
in all values of `, we sequentially add nodes, in reverse. We
compute maximum tree sizes over several random samples
g from G, with edges pre-sampled and nodes incrementally
added according to each strategy θ ∈ Θ:

Eg∼G[{T (g \ θg(`))}n`=1] ≈ 1

M

M∑
j=1

0∑
`=n−1

T (gj \ θgj (`)), ∀θ

where M is total number of graph samples and the decreas-
ing ` indicates that nodes are incrementally added to gj .

To compute the maximum tree size T (·) efficiently, we
build upon the DAGGER algorithm [16], employing a dy-
namic reachability index that returns nodes reachable from
any node and also supports node insertions. Given g, the
index maintains a directed acyclic graph (DAG), where each
node represents a strongly connected component (SCC) in
g, called graph condensation. A node’s insertion implies the
insertion of its pre-sampled incident edges. Assume a new
edge e = (u, v) is inserted. Let s and t be the SCCs u and
v belong to, respectively. DAGGER checks whether there is
a path from t to s, using its reachability index. If there is
a path, then the insertion of e merges at least two existing
SCCs. To find all SCCs to be merged, DAGGER recursively
traverses the path from t to s, while pruning descendants of
t that do not have a path to s.
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We extend DAGGER with a query that returns a net-
work’s maximum tree size. Let g′ = (V ′, E′) be the DAG
that corresponds to g. For each node v′ ∈ V ′, we maintain
a label v′.r as the set of nodes u′ ∈ V ′ reachable from v′:
v′.r = {u′ ∈ V ′|∃path v′ → u′} ∪ {v′}. After inserting a
new node w to g, we obtain the corresponding w′ ∈ g′,
such that w′ represents the SCC w belongs to, calculate w′.r
based on the out-neighbours of w′ in g′, and propagate w′.r
to all ascendant nodes of w′. Since a new node w may result
in the removal of a SCC, we propagate a set of ids of the
removed SCCs to ascendant nodes of w′ as well. Finally, we
maintain a heap of root nodes, valued by the size of their
labels. Once an update from w′ reaches a node u′ with zero
in-degree, we add u′ to the heap, or update the heap’s value
if it already contains that w′.

(a) A condensation (b) Adding node (c) Updating labels
Fig. 1: Maintaining the DAG reachability index.

Figure 1a shows an example graph condensation. Let
node D represent an SCC. Node A can reach nodes
B,C,D,E, node B can reach C , and D can reach C,E.
Besides the reachability labels, we assume a DAGGER index
built on the graph. Assume a new node E is added to the
graph (Figure 1b). The algorithm first adds an edge (E,F ),
then (F,D). After (F,D) is added, the DAGGER index
determines that there exists a path from D to F through
E, so F , D and E have to be merged into a new SCC,
represented by node G (Figure 1c). Thereafter, G constructs
a new reachability label based on the former label of D,
and propagates the information about the added and the
removed nodes to its ancestor node A.

Algorithm 1 illustrates how we compute the SEMR
measure incrementally, by calling SEMR(), which calls
INSERT(w,H). H is a heap organizing the nodes of DAG,
ordered by the sum of reachable SCC sizes. When per-
forming a node insertion, we first perform the insertion,
as explained in the above, by the DAGGER.INSERT()
query, then collect the ids of the new node’s SCC (Line 3)
and all invalidated SCCs (Line 4). Lines 5-6 calculate the
reachability of node w′, which corresponds to the new node
w in the DAG. Lines 8-11 traverse all nodes reachable from
w′ in the reverse DAG (g′)T by breadth-first search. We
update the reachability label of each reverse reachable DAG
node u′ according to the set of removed SCC’sR, and the set
of DAG nodes reachable from w′. Last, if during a traversal
we reach a root node (Lines 10-11), we insert or update the
corresponding reachability value in the heap H .

The SEMR() function in Algorithm 1 returns SEMR for
a single seed. For k seeds, in Line 19 we greedily pick
k nodes from the heap H , prioritized by marginal gain
in terms of reachable nodes in g. We apply the lazygreedy
optimization [51] while collecting top root nodes. Assume i
nodes are already picked, and Ω is the set of picked nodes.
Once the (i + 1)-st node v is picked from H , the algorithm

checks whether there exists a node u reachable from v and
w ∈ Ω, such that u is reachable from w. If so, the algorithm
updates the label of v, enheaps v again, and picks the next
node from H . The lazygreedy optimization is applicable,
since (i) adding a new root to a set of selected roots does
not change the set of candidate roots, and (ii) maximizing
reachable nodes is a submodular objective.

The performance of SEMR computation depends on
set union and subtraction operations (Lines 6 and 9). We
implement a variant where all operations on reachability
labels are performed by a bitset data structure; this measure
reduces the time of set operations, but incurs an overhead in
calculating the heap value, as it queries single bits for each
root node. More advanced set data structures, such as Binary
Decision diagrams [52], may improve efficiency further.
Algorithm 1 SEMR Computation
1: function INSERT(w, H)
2: DAGGER.INSERT(w)
3: w′ ← SCC(w) . w′ is a node in g′, that corresponds to SCC in g and

has a label r
4: R← a set of removed nodes from g′

5: for all v′|(w′, v′) ∈ g′ do
6: w′.r ← w′.r ∪ v′.r
7: Q← {u′|∃ pathw′  u′ in (g′)T }
8: for all u′ ∈ Q do
9: u′.r ← u′.r ∪ w′.r \ R

10: if @v′|(v′, u′) ∈ E′ then
11: H.insert(< u′, |{v ∈ g|SCC(v) ∈ u′.r}| >)

12: function SEMR
13: for all θ ∈ Θ do
14: sθ ← empty list
15: Initialize DAGGER with empty graph
16: H ← a descending heap of < key, value >
17: for all v ∈ θ.reverse() do
18: INSERT(w,H)
19: v′, s← H.top() . Apply lazygreedy for k > 1
20: sθ[`] = s

21: smin ← empty list
22: smin[`]← minθ sθ[`] ∀`
23: return

∑
smin

4.1 Complexity Analysis

An iteration of SEMR computation involves DAG main-
tenance, reachability label propagation, and greedy root
selection. The complexity of an edge insertion that does
not create a new SCC is constant; in case a new SCC is
created, the worst-case complexity is O(m′), where m′ is
the running number edges in the DAG [16]. Reachability
label propagation takes O(m′2), as it updates labels for
all ancestors of a new node in the DAG, and each update
requires a set union operation on sets of size at most m′.
For greedy root selection, it traverses all roots of the DAG
and calculates the total size of all SCCs reachable from each
root. As we maintain SCC sizes and a list of roots while
building the DAG, single root selection takes O(m′). We
select k roots, resulting in O(k · m′), while the lazygreedy
optimization makes it significantly faster. With the bitset
data structure, there is an additional step to calculate the
number of nodes reachable from roots. Each DAG node
maintains the number of corresponding SCCs, and a set
of reachable DAG nodes. To get the number of reachable
nodes, we traverse all bits, incurring an additional m′ factor.

To calculate the minimum over all considered immuniza-
tion strategies, we evaluate SEMR per each strategy inde-
pendently, hence a |Θ| factor. Summing up, the calculation
of SEMR takesO(|Θ|·nm′(m′+k)). Using a sampling factor
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α > 1, we perform greedy selection only for sampled nodes.
With q = blogα(1 + n(α − 1))c samples, the complexity
becomes O(|Θ| · (nm′2 + qk)).

4.2 Approximation Guarantees
Algorithm 1 estimates the maximum forest size in a single
MC iteration by selecting root nodes greedily. This method
is a special case of Influence Maximization [37] on a network
with all edge probabilities equal to 1, hence achieves a (1−
1
e ) approximation guarantee. Since simulation instances are
i.i.d., we use the Chernoff bound to prove the approximation
ratio of our randomized greedy algorithm. The failure prob-
ability of θ samples is Pr[Mg − (1 − 1

e − ε) M∗ < 0] =
O(exp(−εθ

(
1− 1

e

)
M∗)), where Mg is the average of max-

imum forest sizes returned by our algorithm, M∗ is the
true average maximum forest size, and ε is a parameter that
trades off between error and number of samples generated.
Thus, Mg converges to a (1 − 1

e − ε)-approximate solution
with probability of failure exponentially decreasing with
respect to sample size θ.

RNI inherits the guarantees of DIM [50]; given a suffi-
cient number of samples, it returns a seed set S such that
σ(S) ≥

(
1− 1

e − ε
)
σ(S∗) with probability at least 1 − 1

n ,
where σ is expected spread, and S∗ is an optimal seed set.

The SatGreedy algorithm returns a seed set S′ that
approximates the original objective ρ(S) with guarantee

ρ(S′) ≥
(

1− 1

e

)
· ρ(S∗)− γ

where k is constraint on the number of seeds and γ ∈ (0, 1)
is an approximation parameter. For the guarantee to hold, γ
has to be related to β as β = 1+ln |Θ|+ln 1

γ , where Θ is the
employed set of strategies. It is worth noting that, even with
large γ = 0.9 and only two strategies, β = 1 + ln 3|Σ|/γ ≈
2.89, i.e. SatGreedy requires to increase the seed set size
more than 2 times for its approximation guarantee to hold.
The authors set γ = 2 · 10−3 · |Σ| empirically [53], while
keeping β ≤ 2, therefore the approximation guarantee does
not hold for the experiments presented in the paper; the
solution operates as a heuristic.

5 EXPERIMENTAL STUDY

Experiments ran on a 378G RAM Intel Xeon CPU @ 3.10GHz
running Ubuntu 18.04. All algorithms are implemented1 in
C++ and compiled with gcc 7.4 with -O3 optimization. We
set timeout 10h per one measure computation. Runtime
and timeout do not include time for the strategy set Θ
computation, which is the same for all measures. We assign
edge probabilities by either Random or Uniform assignment.
By Random assignment, we pick a value for each edge
uniformly from 0 to W , where W is a parameter. By Uniform
assignment, we assign a certainW value to each edge. When
working with the LT model, we additionally divide the
value on each edge incident to a node u by the in-degree
of u. We use the IC model unless stated otherwise.

In the following, we first describe our data (Section 5.1).
Then we perform a comparative study of SatGreedy to
simpler baselines proposed in [14] on the SRIM objective

1 The code is available at https://github.com/allogn/robustness.

(Section 5.2), concluding that one of those baselines (Single-
Greedy) is more suitable for calculating SRIM; and use that
in subsequent experiments. Section 5.3 studies the three pre-
sented measures on various synthetic and real-world data,
illustrating patterns of behaviour and the expressiveness
of the new SEMR measure in comparison to other two. In
Section 5.4, we propose a notion of diffusion entropy as the
difference between SEMR and SRNI, and in Section 5.5 we
show how the expressiveness of SEMR can be exploited to
obtain stochastic networks with more robust structure. The
last three sections study the efficiency and scalability of the
proposed algorithms.

5.1 Datasets
Synthetic Networks. We study power-law networks, repre-
sented by the Barabási-Albert (BA) model, and homogeneous
networks, represented by the Gaussian Random Partition
(GRP) [54]. For BA, we use the algorithm of Holme and
Kim [55], which extends the original Barabási-Albert model,
yet use the BA label as its basis. The algorithm randomly
creates µ edges for each node in a graph, and for created
edge with a probability p adds an edge to one of its neigh-
bors, thus creating a triangle. GRP groups nodes so that
group sizes follow a Gaussian distribution with expected
size s and variance of size equal to s/v, where v is a shape
parameter. It uses a probability value pin for edges across
nodes in the same group, and pout otherwise.

Network |V | [·103] |E| [·103] dmax , d cl r
Blogs 1.2 19.0 467, 31 0.336 -0.2309

Minnesota 2.6 3.3 5, 2 0.024 -0.1848
VK 2.8 40.8 288, 29 0.247 -0.1711

Advogato 6.6 47.3 947, 14 0.211 -0.0951
DBLP 12.6 49.7 710, 8 0.117 -0.0540

Brightkite 56.7 212.9 1134, 8 0.117 0.0108
Gnutella 62.6 147.9 95, 5 0.007 -0.0063
Stanford 281.9 2312.5 38626, 16 0.597 -0.1220

TABLE 3: Real-world datasets; dmax, d: maximum and average
degree; cl: average clustering coefficient [56]; r: assortativity
coefficient [40].

Real-world networks. We use real-world datasets of
various sizes and degree distributions: Blogs contains front-
page hyperlinks between blogs during the 2004 US elec-
tion [57], [58]. DBLP is a citation network of scientific
papers [59], [58]. Advogato is a network of trust relation-
ships in an online community platform for free-software
developers [60], [58]. Minnesota is a road network [61]. VK
is a social network with influence probabilities derived from
the content of posts published by users [42]. Brightkite is a
location-based social network [62]. Gnutella is a snapshot of
the Gnutella peer-to-peer file sharing network [63]. Stanford
represents pages and hyperlinks of the Stanford University
web site [64]. Table 3 lists our real-world datasets. Our
experiments employ directed networks; we transform undi-
rected networks to directed ones, replacing each undirected
edge with two directed edges in opposite directions.

5.2 Choice of Algorithm for RIM Computation
As a preliminary experimental choice, we study the perfor-
mance of methods for RIM calculation, including algorithms
and baselines in [14]. We use the IMM algorithm for influ-
ence maximization [65] as a non-robust baseline. We include
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the SingleGreedy method with the CELF (i.e., lazygreedy)
optimization, proposed in [14], and also its variant without
this optimization, given that, on this non-submodular prob-
lem objective, the CELF optimization affects quality.

(a) BA (b) BA (c) BA

(d) GRP (e) GRP (f) GRP
Fig. 2: RIM. BA (n=5 · 103, `=50, k=100, µ=2), GRP
(n=3 · 103, `=180, k=90). W =0.1, SatGreedy: γ=10−4.

We first compare the performance of algorithms under
node attacks, i.e., in the computation of the unaggregated
RIM objective, with BA and GRP data. Figure 2 depicts the
fraction of active nodes ν vs. graph size n, seed set size k,
and number of attacked nodes `. SatGreedy outperforms
other methods. However, SingleGreedy CELF achieves al-
most the same quality as SatGreedy. IMM has a significant
disadvantage over other solutions which grows with `,
imprinting the significance of using robust algorithms.

(a) Runtime of SRIM baselines (b) Objective of SRIM baselines

Fig. 3: SRIM on BA, p=0.4, µ=10, W =0.3, k=50.

Now we drop the non-robust IMM algorithm out of
the comparison, and study the performance of robust algo-
rithms, with the DIM algorithm embedded, on the runtime
for computing, and value of, the aggregate SRIM measure
on the BA network. Figure 3 shows our results for k = 50
seeds. As in Figure 2, SingleGreedy stands out in terms of
objective, at the cost of higher runtime. The difference in ob-
jective is more prominent now, as we aggregate the measure
over all values from 1 to `. The runtime for computing Θ is
negligible, reaching 4s for the largest network.

These results indicate that SingleGreedy (w/o CELF)
offers the best effectiveness, but low efficiency. SingleGreedy
with CELF at least matches the performance of Single-
Greedy and SatGreedy, is more efficient, and does not re-
quire any accuracy parameter γ, as SatGreedy does. Ergo,
we opt for SingleGreedy with CELF in the following.

5.3 Measure Relationships

We now study the relation between measures on small
networks, and their sensitivity to the set of attack strategies,

using two homogeneous networks (Minnesota and GRP)
and two power-law networks (Blogs and VK).

(a) IC, W = 0.8 (b) IC, W = 0.5 (c) IC

(d) LT, W = 0.6 (e) LT, W = 0.6 (f) LT

Fig. 4: Measures on Minnesota road network. k = 50

Figure 4a plots plain EMR, RNI, and RIM values, with-
out aggregation, vs. ` on Minnesota. Values decrease grad-
ually, revealing some irregularities of graph structure in the
middle range of `. EMR and RNI follow a similar pattern,
while RIM differs. For instance, from ` = 1000 to 2000
EMR and RNI present two abrupt drops at the same value
of `. RIM presents several smaller irregularities. Figures 4b
and 4c present the summed measures (SEMR, SRNI, and
SRIM) vs. seed set size k and influence probabilities W ,
respectively. The difference between measures grows, espe-
cially with the size of seed set. We obtained similar results
with the LT model, shown in Figures 4d, 4e, and 4f. We will
see that a similar trend vs. seed set size appears in power-
law networks, in Figures 7c and 8b.

Fig. 5: Minnesota, 7 attack strategies, W =0.5, k=50, Random .

Figure 5 presents a decomposition of measures: instead
of taking a minimum over all strategies, we plot the ex-
pected spread per strategy, with the seed set selected by each
algorithm. EMR and RNI follow the same trend also for each
strategy separately. This is conspicuous with NetShield,
which shows poor performance in its immunization objec-
tive for small `, but swiftly improves in the middle range; it
then becomes the most effective strategy for a short ` range,
but looses that position to PageRank. Remarkably, results
for RNI presents the same outline, but scaled to a smaller
values of active nodes. On the other hand, RIM exhibits
a different behaviour, as all strategies mostly produce the
same response to the selected seeds. This result illustrates
the difference of RIM from the other two measures: RIM is
based on the worst case among the complete set of strategies
by nature, hence can afford to let the selected seeds perform
almost equally well on any attack.

In Figure 6, we take another view on decomposition of
measures: We plot the Jensen-Shannon divergence for each
pair of measure distributions over `, and for each strategy,
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with varying k and W . For example, one point on Figure 6a
shows JSD(EMR(`) ||RNI(`)) for a specific k. JSD values
for EMR vs RNI are much smaller than for other two pairs,
and smoothly converge to zero; values are larger for more
effective attack strategies. On the other hand, the divergence
of RIM from both EMR and RNI is unstable and non-
monotonic, with diverse trends for different strategies. For
example, for Degree and NetShield, JSD grows significantly
with number of seeds k, while for Random it drops.

(a) EMR vs RNI (b) EMR vs RIM (c) RNI vs RIM

(d) EMR vs RNI (e) EMR vs RIM (f) RNI vs RIM
Fig. 6: JS divergence of measures per strategy.

Figure 7a plots the differences EMR-RNI and RNI-RIM
vs. ` on the VK network. RNI-RIM has a convex shape with
a maximum in the middle-range `, while EMR-RNI is almost
zero in the whole range. This behavior differs from the
one we observed with the BA and DBLP networks, where
there is a peak on EMR-RNI. Figure 7b plots non-aggregate
measure values for k = 40. RNI is very close to EMR along
the whole range of `; on the other hand, RNI-RIM also peaks
close to the maximum curvature of lines. Figure 7c shows
that the effect becomes stronger with larger k, aggregating
over all ` values: SRNI remains close to SEMR, while SRIM
diverges from the others; this divergence implies that, on
power-law networks, knowledge about the attack, gained
when moving from RIM to RNI, is more valuable than
knowledge about the stochastic edge outcome, gained when
moving from RNI to EMR.

(a) Differences (b) Measures vs. ` (c) Sums vs. k

Fig. 7: Dependency of measures on VK social network.

Figures 8 and 9 show the proximity among the three
measures on the Blogs and GRP networks. On the power-
law Blogs network, trends are similar to VK, with RNI close
to EMR. However, on the homogeneous GRP network, RNI
is close to RIM for the whole spectrum of network shape
parameters. We conclude that network topology determines
what gain of knowledge matters most; on a homogeneous

network, knowledge about a probabilistic outcome is more
valuable than knowledge about the attack.

(a) k=50, W =0.8 (b) W =0.5 (c) k=50

Fig. 8: Measures vs. `, k, W , Blogs network. Random .

Fig. 9: Dependency on network parameters. GRP. n=2500,
s=100, pin =0.05, pout =5 · 10−4, k=10, W =0.3, Random .

Another interesting feature is the shape of the tail of
distribution (Figures 5, 7b and 8a). There exists a value of
` = `′, such that all three measures converge to the value of
k or ` grows towards `′, but for ` > `′ RIM drops to 0, while
others remain at the value of k. The drop of RIM is concave,
with a gap of first derivative. The region ` > `′ corresponds
to the case where the attacker blocks all nodes by at least
one strategy for any seed set. That strategy determines RIM.
However, for EMR and RNI, seeds are selected after the
attack, therefore there are at least k non-blocked nodes.

5.4 EMR vs RNI: the diffusion entropy
The EMR and RNI measures both pertain to a seeder aware
of the attacker’s actions, i.e., to robust immunization. Their
difference lies in the fact that, by EMR, the seeder is also
aware of the probabilistic network outcome. This difference
expresses the surprise effect or, so to speak, negative entropy
that a probabilistic diffusion outcome presents to the at-
tacker; it shows how much worse the spread can be in the
case of a seeder aware of probabilistic outcomes in compari-
son to the best guess of a seeder unaware of such outcomes.
We study this difference in more detail, using uniform
probability assignment so as to focus on structural effects.
We consider the absolute difference D = EMR − RNI, and
the relative difference Dr = (EMR− RNI)/RNI.

Figure 10 shows the surface of Dr vs. ` and W on the
Minnesota network. Dr is larger for smaller `, and drops
with larger edge probabilities. Still, it is not monotonic
vs. W ; it obtains a maximum value around W = 1.5, and
the peak is more explicit with smaller `.

Fig. 10: IC, Dr , Minnesota, k = 10

Figure 11a shows that the non-monotonic behavior of D
also appears with respect to ` on a BA network. We observe
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similar behavior with the LT model in Figure 11b; most of
the immunization effect is credited to low ` values, with the
peak shifting leftwards. We observe an opposite concavity
of the tails, in comparison with Figure 11a.

(a) IC, BA, n=103, p=0.4,
µ=10, W =0.2

(b) LT, BA, n=1.5 · 104,
p=0.1, µ=2, W =0.3

(c) IC, BA, n=103, p=0.4,
µ=10, W =0.2

(d) LT, BA, n=1.5 · 104, p=0.1,
µ=2, W =0.3

Fig. 11: Local maximum of D; BA: k=5

Figures 11c and 11d show D values for BA networks
of different assortativity coefficients r, with the IC and
LT models. The assortativity coefficient [40], defined as
r =

∑
xy xy(exy−axby)

σaσb
with ax =

∑
y exy and by =

∑
x exy ,

where exy is the joint probability distribution of the degree
values x and y and σa, σb, the standard deviations of the
distributions of ax and by , respectively. r expresses the
tendency for nodes of similar degree to be connected. We
generate a BA network and increase the coefficient using
the edge rewiring technique of [6]; that is a local search
heuristic that randomly samples pairs of edges, e.g., pair
{(v1, u1), (v2, u2)}, and rewires them to {(v1, u2), (v2, u1)}
if that improves the objective. The figure legends show the
r values resulting after epochs of 2000 iterations, starting
with the original BA network. Notably, the observed peaks
become flattened as r grows.

D also relates to the relative marginal gain seeds addi-
tion by the seeder. We define δθi(`) as the relative marginal
gain of the second seed for any strategy θi ∈ Θ under `
attacked nodes:

δθi(`) =
maxS:|S|=1 σθi(`)(S)−maxS:|S|=2 σθi(`)(S)

maxS:|S|=1 σθi(`)(S)

We then calculate a new quantity ∆(`) as the maximum
differential quotient of δ over all strategies for each `:

∆(`) = max
θi∈Θ

{δθi(`)− δθi(`− 1)}

Figure 12a juxtaposes D and ∆ for different BA model
parameters, plotted with moving average smoothing. Re-
markably, their two peaks align, with a slight shift to the
right for ∆. This finding implies that, on BA networks, the
values of ` for which the network ceases to be strongly
centralized, hence ∆ flattens out, would also cause the
highest surprise to an attacker.

Figure 13a plots D as a colored interval vs. `, on the
DBLP real-world network, while varying edge probabilities.

(a) D vs. ∆, BA (b) Fixed size, Θ={Degree}

Fig. 12: Local maximum ofD; BA; n=1000, p=0.4, µ=10; k=1

(a) Colored interval shows difference (b) D (SEMR-SRNI)
Fig. 13: D on DBLP. α=1.075, k=50, β=40, Random .

D is largest (i.e., widest) for middle-range W values. Fig-
ure 13b illustrates this fact, summing over all ` values. This
non-monotonic dependence of D on W suggests that we
may control a network’s robustness by tuning edge weights.

We exploit the behaviour of D to generate networks
of enhanced robustness: we fix size to 1000 nodes, yet first
generate a network of larger size and then remove super-
fluous nodes by the Degree strategy. We call the amount of
nodes first added and then removed shift. Figure 12b plots
D vs. shift. Shifting improves network robustness in terms
of D; we create networks in which a seeder has the poten-
tial to perform surprisingly well against an attacker. The
lower subfigure plots the number of edges in the obtained
network; as there is no correlation between the peak of D
and number of edges, the peak must be attributed to the
network’s structure.

5.5 Case Studies
We provide examples of robust networks using the edge
rewiring technique introduced in Section 5.4 [6] with a
robustness measure as an objective. We experiment with
SRIM and SEMR, since SRNI exhibits similar behavior to
SEMR (see Section 5.3). The sampling proceeds until |E|
iterations bring no change.

(a) Original (b) SRIM-based (c) SEMR-based
Fig. 14: Robust BA networks

We experiment with a random BA network of 100 nodes,
uniform edge probability of 0.5, and 2 seeds. Figure 14
shows the original network (non-robust), and two networks
obtained by the aforementioned procedure for SRIM and
SEMR, respectively. Colors indicate similar node degrees,
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blue for larger, green for medium, and red for smaller. We
plot the networks using the Fruchterman Reingold algo-
rithm [66]. We note that the network targeting SEMR has
an onion-like structure, as robust static networks do [67],
while the others show no evident patterns.

(a) BA, SEMR-based (b) BA, SRIM-based (c) VK, Ego
Fig. 15: Effect of rewiring (a,b), node removals (c)

Figure 15 shows robustness values through the algo-
rithm’s iterations. When targeting SEMR (Figure 15a), SRIM
is oscillating with a rising trend. When targeting SRIM itself,
beneficial changes are hard to find, with only 11 successful
iterations and minor robustness improvement (Figure 15b).
This result highlights SEMR as a more expressive measure.

In another approach, we incrementally remove nodes
that lead to the highest SEMR gain on sampled ego net-
works of VK. The ego network of node v contains v (ego),
adjacent nodes of v (alters), and the edges between them.
Ego networks are useful in understanding the micro-level
structure of social networks [68]. We sample ego networks
of size between 10 and 50 nodes, having from 10 to 300
edges. We normalize SEMR by the value at ` = 0. Figure 15c
presents our results. Solid lines are averaging over 100
samples, and shaded regions represent standard deviations;
the x-axis is normalized by n. Greedy node removal leads to
10% of SEMR increase after removing 30% of nodes, and a
positive improvement for any number of nodes until∼ 50%
of all nodes removed; other measures are less affected.

5.6 SEMR Computation Efficiency

Here, we compare the runtime of S-Dagger and BIT-Dagger
on BA and Minnesota to the following baselines, which pro-
gressively introduce SEMR algorithm features: DFS finds
the maximum tree by depth-first search for each node in
each MC iteration; TD-SCC performs a deterministic graph
condensation (i.e., finds SCCs that form a DAG) and runs
a top-down breadth-first search from each root node in the
DAG to find the maximum tree; BU-SCC performs a de-
terministic graph condensation with bottom-up reachability
labelling, similarly to S-Dagger, but without a dynamic
reachability index; DynSCC performs graph condensation
with dynamic bottom-up labeling, but in lieu of using DAG-
GER, it maintains DAGs naively, decreasing ` and rerunning
Tarjan’s algorithm [69] for each affected DAG node.

DAGGER-based algorithms achieve a significant run-
time improvement in comparison to baselines. BA (Fig-
ure 16a) is a denser, power-law network, while Minessota
(Figure 16b) is a sparse homogeneous network. In both
cases, DFS is the worst approach; graph condensation sig-
nificantly improves runtime. On Minessota, the runtime of
TD-SCC and BU-SCC even improves as weight W grows,
as more SCCs appear. On this sparse network, the efficient
maintenance of SCCs is crucial. DynSCC maintains SCCs

less efficiently than DAGGER, hence its runtime deteriorates
as W grows. BIT-Dagger is less efficient than S-Dagger on
the sparse graph, though more efficient on the dense power-
law network, as traversing the labels of each root node
and retrieving SCC sizes corresponding to reachable nodes
is less costly for sets than bitstrings. On a sparse graph,
the bitset data structure incurs a large overhead traversing
sparse bit strings. Still, on a dense graph, the bitset structure
compensates by significantly more efficient set operations.
Henceforward, we use S-Dagger as the default option.

(a) BA, W =0.3, p=0.4, µ=10. (b) Minnesota road network

Fig. 16: EMR computation. Θ = {Degree}, k=1; the immu-
nization runtime is trivial.

5.7 Sampling Accuracy
To scale to larger networks, we evaluate our measures
using sampled values of ` only. As the measures present
a rapid decrease in the beginning of the ` range, we set a
large initial sampling rate, and increase the sample interval
geometrically with `. A parameter α defines that geometric
growth. We thereby sample ` values of

` ∈ {0} ∪
{∑j

i=1 α
i−1
}blogα(1+n(α−1))c

j=2

If α = 1, we sample the complete set of ` values. For α > 1,
we use cubic splines [70] to fit the sampled values and thus
obtain robustness measures for the complete range of `.

(a) Minnesota (b) Minnesota

(c) DBLP (d) DBLP

Fig. 17: Performance vs. α; R2 averaged over adversaries,
Random prob; MinnesotaW =0.7, k=10; DBLPW =0.5, k=50;
immunization time 2s on Minnesota, 82s on DBLP.

Figure 17 shows the effect of α on Minnesota and DBLP
networks (power-law and homogeneous, respectively). We
measure the coefficient of determination R2 between

∑
` ν

calculated for each ` (observation), and using cubic splines
over sampled values of ` (model). On DBLP, SRIM does not
terminate with α = 1, so we use a fitted model for α = 1.01
as ground truth; α increasing from 1 to 1.075 does not affect
the accuracy of fit significantly, while runtime drops. Yet R2

drops for α = 1.1 on Minnesota and α = 1.2 on DBLP. Ergo,
we set α = 1.075 as a default value in the following.

5.8 Scalability
Figure 18 presents the scalability of the proposed algo-
rithms, as well as with runtime required for immunization.
BIT-Dagger looses in runtime in all cases except on dense
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networks of larger size, where S-Dagger becomes the slow-
est due to its costly set operations. SRNI and SRIM have
nearly similar runtimes in all cases.

(a) Dense BA, p=0.9, W =0.1,
µ=20, k=30, Uniform

(b) Sparse BA, p=0.2, W =0.1,
µ=3, k=30, Random

(c) Dense GRP, W =0.6, k=50,
s=60, v=0.5, pin =0.015,
pout =5 · 10−4, Random.

(d) Sparse GRP, W =0.1,
k=50, s=40, v=0.5,
pin =0.01, pout =10−4,
Random.

Fig. 18: Scalability on synthetic networks. α = 1.075.

Figure 19 shows results for larger real-world networks.
Advogato yields a larger fraction of active nodes

∑
` ν, so

SEMR performs poorly. In reverse, on Brightkite the sum is
small, so SEMR is the fastest. DBLP allows a larger sum than
Brightkite and Gnutella, yet yields lower runtime, due to its
more flat structure, i.e., small edge density and maximum
degree. The SRNI-SRIM and SEMR-RNI differences appear
similar, except for Advogato, where awareness of the attack
leads to a large increase. On Stanford data, SRNI and SRIM
did not terminate within 10h for W = 0.5 and α = 1.075;
we decreased the problem complexity by setting W = 0.1
and α = 1.2, hence the observed spread is low.

(a) Robustness (b) Runtime
Fig. 19: Scalability on larger networks. W =0.5, Random ,
k=100, α=1.075; on Stanford: W =0.1, α=1.2

6 CONCLUSIONS

We introduced three aggregate measures that evaluate the
diffusion robustness of probabilistic networks. We anchor
these measures on a seeder who orchestrates an Indepen-
dent Cascade diffusion under node attacks. Each measure is
based on a notion of worst-case maximum expected spread.
We introduced efficient algorithms to calculate these mea-
sures and sample-based versions thereof that enable their
computation on realistic networks of up to 105 nodes. Our
experimental study revealed that measures sharing the same
notion of seeder awareness regarding the adversarial attack
are closer on scale-free networks, while those sharing the
same notion of awareness regarding the network instance
are closer on homogeneous networks. Our results provide
tools for assessing and enhancing the robustness of real-
world probabilistic networks. In the future, we plan to study

measuring robustness on anonymized networks [71], [72]
while safeguarding privacy, in the spirit of [73].
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