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ABSTRACT
How can we assess a network’s ability to maintain its functionality

under attacks? Network robustness has been studied extensively

in the case of deterministic networks. However, applications such

as online information diffusion and the behavior of networked

public raise a question of robustness in probabilistic networks. We

propose three novel robustness measures for networks hosting a

diffusion under the Independent Cascade (IC) model, susceptible

to node attacks. The outcome of such a process depends on the

selection of its initiators, or seeds, by the seeder, as well as on two

factors outside the seeder’s discretion: the attack strategy and the

probabilistic diffusion outcome. We consider three levels of seeder

awareness regarding these two uncontrolled factors, and evaluate

the network’s viability aggregated over all possible extents of node

attacks. We introduce novel algorithms from building blocks found

in previous works to evaluate the proposed measures. A thorough

experimental study with synthetic and real, scale-free and homoge-

neous networks establishes that these algorithms are effective and

efficient, while the proposed measures highlight differences among

networks in terms of robustness and the surprise they furnish when

attacked. Last, we devise a new measure of diffusion entropy that

can inform the design of probabilistically robust networks.
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1 INTRODUCTION
Networks are ubiquitous in the modelling of infrastructures [39, 44],

social interactions [25, 33, 34], physical and life-science phenom-

ena [9, 53]. Yet such networks are subjects to failures or attacks [17],
whereby some of their elements may be disabled or removed.

Network robustness expresses the degree in which a network

retains essential features of its functionality despite attacks [52].

Deterministic robustness. Some measures of network robust-

ness gauge the change of a deterministic graph property, such

as diameter, average path length [36], or inverse shortest path

length [46], after random failures. Another measure, grounded

on percolation theory [55], aggregates the size of the largest con-

nected component (LCC) [36, 52] over all possible sets of blocked

nodes [53].
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Stochastic robustness. In applications such as information dif-

fusion and epidemiology there is uncertainty regarding the connec-
tions in the network, i.e., the network is stochastic. We study the

operation of such a stochastic network under attacks on nodes, ex-

pressed as the expected number of activated nodes under a diffusion

process. We refer to this type of robustness as probabilistic network
robustness. Despite the extensive study of deterministic network

robustness [29], its probabilistic counterpart has been scantily stud-

ied. There are studies on how to engineer a robust diffusion in an

adversarial environment [12, 21], but an investigation on how to

measure robustness in such environments is missing.

In this paper, we study the robustness of probabilistic networks

expressed by means of the capacity to carry out a successful inde-

pendent cascade diffusion under node attacks. We introduce three

robustness measures built around two sources of uncertainty: at-

tacks on nodes and probabilistic diffusion outcomes on edges.

2 BACKGROUND
Processes in large networks, such as the flow of electricity in a

power grid, package routing and delivery in the internet, and pro-

tein delivery in a cell, are vulnerable to attacks. Such events may

cause electricity blackouts [15] or epidemics [58].

2.1 Deterministic Robustness of Integrity
Network robustness reflects a network’s ability to maintain its

connectivity under attacks [40]. The connectivity of an undirected
network is measured by the expected size of its largest connected

component (LCC) after an attack [40]. This expected LCC size is

also defined on probabilistic undirected networks [24].

Scale-free networks are highly robust to random node failures but

vulnerable to targeted node attacks [3]; increasing their robustness

against attacks is in conflict with maintaining their natural robust-

ness against random failures [5]. Some robustness measures take

into consideration both random and target failures [47]. Such an

inclusive measure of robustness, targeted by a local-search heuristic

in [53], is the sum of worst-case LCC sizes over all cardinalities of

sets of blocked nodes:

R(G) =
1

n2

n∑
Q=1

s(Q) (1)

where n is the number of nodes in the network and s(Q) is the
size of the LCC after removing Q nodes; the normalization by n2

ensures values are comparable across networks, being in the range

[ 1n ,
n−1
2n ]. The heuristic in [53] leads to an onion-like graph struc-

ture, with nodes of similar degree tending to be connected to each

other [19]. The closely related network reliability problem [18] se-

cures connectivity between two predefined node sets under edge

failures. We are interested in the robustness of stochastic diffusion

processes under node attacks, which resembles the robustness of de-

terministic networks under node attacks and random edge failures,

yet has received limited attention [10].
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2.2 Stochastic Robustness of Diffusion
Network robustness also refers to a network’s capacity to host a

diffusion process despite the exclusion of some network elements [5,

7, 11, 21]. The mathematical modelling of diffusion is independent

of semantics: it may be a diffusion of information, of cascading
failures, or a viral infection epidemic [15]. Similarly, a node attack

is mathematically equivalent to a node immunization or failure. As

the effect of node attacks is evaluated by a stochastic process, we

reach the concept of stochastic robustness.
A diffusion may be epidemic, threshold, or cascading [61]. There

are two popular epidemic models [49]: By the SIS model, nodes

are either susceptible or infected; a node may get infected from its

neighbors and become susceptible again after some time. By the

SIR model, it may recover and becomes immune. The expected size

of an SIR epidemic starting at u is equal to the expected size of the

connected component that contains u [16]. Epidemic models typi-

cally consider a homogeneous infection rate, yet two models study

information diffusion with heterogeneous rates [35]: the Indepen-
dent Cascade (IC) model (a special case of SIR [62]) and the Linear
Threshold (LT) model [28, 34]. Under these models, the Influence
Maximization (IM) problem [28] seeks a set of initially active nodes,

or seeds, that maximizes the expected number of activated nodes.

2.3 Robustness under the IC model
We focus on the IC model, widely used to study word-of-mouth

effects in social networks [34], by which a diffusion proceeds in

discrete time steps. At time t = 0, a set of seed nodes S ∈ V are

activated. Any node v activated at time t tries to activate its out-

neighbours at time t + 1, and succeeds with an independent proba-

bility pe = puv for each neighbor u. In case of success, the edge e is
active. This cascading process terminates when there are no more

trials for activation. The set of active nodes and edges forms a de-

terministic live-edge graph д [28]. The spread, or expected number

of activated nodes, is the expected number of nodes reachable from

S in G, while each edge may fail independently with probability

1−pe . Hence, diffusion robustness under the IC model corresponds

to the deterministic robustness under targeted node attacks and

random edge failures with respect to seeds.

Related problems are sensitivity to edge perturbations [2, 20,
57] and robust influence maximization (RIM) under edge pertur-

bation [12] or any adversarial source of uncertainty [21]. Given a

finite set of adversarial strategies Θ, the objective in [21] is:

max

S, |S | ≤k
min

θ ∈Θ

σθ (S)

σθ (S
∗
θ )

(2)

where σθ (S) is the spread achieved by seed set S under strategy

θ , S∗θ is the optimal seed set for θ , and k is a budget constraint;

the normalization by σθ (S
∗
θ ) measures the fraction over optimal

influence; an absolute measure is used with continuous θ in [26].

The Saturate Greedy (SatGreedy) algorithm [21] solves the RIM

problem by targeting the cumulative effect of all strategies, which

is a submodular objective. This algorithm, applicable on any mono-

tonic and submodular parameterization of the spread function, pro-

vides a bi-criteria approximation guarantee: violating the budget

constraint k by an O(k ln |Θ|) factor leads to an (1 − 1

e ) approxi-

mation of the optimal solution. We adopt the RIM objective as a

component in one of the measures we introduce.

Stochastic graph with nodesV and edges E G = (V , E)
Number of nodes and edges ofG n,m

Deterministic graph sampled fromG д ∼ G
Edge probability parameter W
Set of attack strategies Θ = {θi }
Degree of a node v d (v ∈ V )

Number of blocked (removed) nodes ℓ
Reachability indicator function I (v, S )

EMR-RNI D
Expected number of activated nodes σ
A seed set S and size of the set k S , k = |S |

Table 1: Notations

3 DIFFUSION ROBUSTNESS MEASURES
We propose three robustness measures, anchored on the awareness

of a seeder, who selects seed nodes, regarding node attacks and

probabilistic diffusion outcomes. Table 1 lists our notations.

3.1 Attack Strategies
We measure robustness against an attacker who disables nodes.

A consideration of all possible attack strategies amounts to the

NP-hard problem of node immunization [11, 22, 38, 62]; instead, we

demarcate a strategic set of structure-aware attack strategies on a

directed stochastic network G, ΘG = {θ
i
G } [21]; θ

i
G (ℓ) is a set of ℓ

nodes in G chosen by strategy θ ; дθ denotes the graph obtained by

removing nodes from a deterministic instance д of G according to

θ (ℓ). We opt for strategies that are also node ranking functions. A

recent study assigns attack strategies of four types to three or four

clusters by applying several distance measures on their outputs [4].

We select six strategies that represent each type and cluster in [4],

plus a spectral-based baseline, NetShield [11, 37, 50, 62]:

(1) Degree picks nodes with the largest degree;

(2) Random picks seed nodes uniformly at random;

(3) Acquaintance [14] picks a random node’s neighbor;

(4) PageRank ranks nodes by PageRank values [45];

(5) Katz centrality [27] equals xi = α
∑
j Aijx j + β , where α =

0.1, β = 1, and A the network’s adjacency matrix.

(6) Betweenness centrality is the sum of the fraction of all-pairs

shortest paths that pass through a node.

(7) NetShield [11] greedily selects a set of nodes S , aiming to

maximize a spectrally defined Shield value.

3.2 Awareness-based Robustness Measures
We define three robustness notions based on the abstraction of

seeder awareness of attacks and diffusion events, aggregating out-

comes over all possible attack sizes, and a notion of diffusion entropy
that shows how much difference seeder awareness can make.

3.2.1 EMR. Assume an omniscient seeder with access to an oracle

that predicts the outcome д of a diffusion onG and of an attack on д
that produces дθ . As discussed in Section 2.1, the robustness of a

deterministic undirected network G can be expressed by its largest

connected component (LCC) [40]. When G is a directed network,

the LCC substructure is generalized to either of the largest strongly

or weakly connected component [54]. Here, we define the expected

maximum number of nodes such an omniscient seeder can reach by

diffusion from a seed set S of size k in G under a worst-case attack

strategy θ ∈ Θ(ℓ) as the Expected Maximum Reach (EMR):

EMRG (ℓ) = min

θ ∈Θ(ℓ)
Eдθ∼G

[
max

S : |S | ≤k

∑
v ∈дθ

I (v, S)

]
(3)
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where I (v, S) indicates whether there exists a path from S to nodev
in a live-edge instance of a directed network, дθ ;

∑
v ∈дθ I (v, S) is

the size of a maximum forest with at most k roots. Our first measure

aggregates EMRG (ℓ) over all values of ℓ, normalized by network

size. We call this measure sum of EMR or SEMR:

SEMRG =
1

n

n∑
ℓ=1

EMRG (ℓ) (4)

We introduce an algorithm for SEMR computation in Section 3.3.

3.2.2 RNI. Let us now consider a seeder lacking knowledge of

diffusion outcomes, but having access to an oracle that predicts

node attacks. We define the maximum number of nodes such a

seeder can expect to reach in G under a worst-case attack strategy

θ ∈ Θ(ℓ) as the Robust Network Immunization (RNI):

RNIG (ℓ) = min

θ ∈Θ(ℓ)
max

S : |S | ≤k
Eдθ∼G

[ ∑
v ∈дθ

I (v, S)

]
(5)

where Eдθ∼G [
∑
v ∈дθ I (v, S)] is the expected size of the number of

nodes v ∈ дθ to which a path exists from S . Our second robustness

measure aggregates RNIG (ℓ) over all values of ℓ, normalized by

network size. We call this measure SRNI :

SRNIG =
1

n

n∑
ℓ=1

RNIG (ℓ) (6)

The computation of RNI requires solving an influence maxi-

mization (IM) problem on a graph with θ (ℓ) nodes removed for

each attack strategy θ ∈ Θ and each value of ℓ. We do so while

building sampled networks дθ incrementally, using the dynamic

IM algorithm (DIM) [43], which extends IMM [56].

3.2.3 RIM. Last, we consider a seeder who has information neither

about diffusion outcomes, nor about node attacks. We define the

maximum number of nodes such a seeder can expect to reach under

a worst-case θ ∈ Θ(ℓ) as Robust Influence Maximization (RIM) [21]:

RIMG (ℓ) = max

S : |S | ≤k
min

θ ∈Θ(ℓ)
Eд∼G

[ ∑
v ∈дθ

I (v, S)

]
(7)

where Eдθ∼G [
∑
v ∈дθ I (v, S)] is the expected number of nodes v ∈

дθ to which a path exists from S . Our third measure aggregates

RIMG (ℓ) over ℓ, normalized by network size; we call it SRIM:

SRIMG =
1

n

n∑
ℓ=1

RIMG (ℓ) (8)

To calculate SRIM we apply SatGreedy [21] with the objective in

Equation 2 modified to account for node removals rather than edge

perturbation and normalizing spread by network size |V | rather
than by the optimal spread under strategy θ , since we are interested
in robustness in the absolute sense:

max

S
ρ ′(S) = max

S
min

θ

σθ (S)

|V |

Further, we enhance the runtime of SatGreedy using the same

dynamic approach as for SRNI [43] to estimate spread. We also

consider the baselines proposed in [21]: SingleGreedy selects k seeds

sequentially, choosing a seed that maximizes the objective in each

step.AllGreedy finds the best seed set for each adversary, and selects
the one of these that maximizes the objective.

3.3 SEMR Computation
To compute the SEMR measure for a single seed, we need to calcu-

late expected maximum tree sizes over randomly sampled attacked

networks д, under each attack strategy. We consider attack strate-

gies θ ∈ Θ under which the set of blocked nodes for ℓ + 1 is a

superset of that for ℓ: θ (ℓ) ⊂ θ (ℓ+1). To obtain a sequence of attack

sets θд(ℓ) for different ℓ on д, it suffices to sequentially remove

nodes from д, or, equivalently, sequentially add nodes to д. We com-

pute maximum tree sizes over several random samples д from G,
with edges pre-sampled and nodes incrementally added according

to each strategy θ , and average values per ℓ to get EMR(ℓ). For the
sake of efficiency, we employ a dynamic reachability index that

returns nodes reachable from any node and also supports node

insertions, building upon DAGGER [60]. Given д, the index main-

tains a directed acyclic graph (DAG), where each node represents a

strongly connected component (SCC) in д, called graph condensa-
tion. A node’s insertion incurs the insertion of its incident edges.

Assume a new edge e = (u,v) is inserted, and s and t being the

SCCs u and v belong to, respectively. DAGGER checks whether

there is a path from t to s , using its reachability index. If there is,

then DAGGER merges all SCCs on all paths from t to s .

Algorithm 1 SEMR Computation

1: function INSERT(w , H )

2: DAGGER.INSERT(w )

3: w′ ← SCC(w ) ▷ w′ corresponds to an SCC in д and has label r
4: R ← set of nodes removed from д′
5: for all v′ |(w ′, v′) ∈ д′ do
6: w ′ .r ← w ′ .r ∪ v′ .r
7: Q ← {u′ |∃ pathw ′⇝ u′ in (д′)T }
8: for all u′ ∈ Q do
9: u′ .r ← u′ .r ∪w ′ .r \ R
10: if ∄v′ |(v′, u′) ∈ E′ then
11: H .insert(< u′, | {v ∈ д |SCC(v) ∈ u′ .r } | >)
12: function SEMR

13: for all θ ∈ Θ do
14: sθ ← empty list

15: Initialize DAGGER with empty graph

16: H ← a descending heap of < key, value >
17: for allw ∈ θ .reverse() do
18: Insert(w, H )
19: v′, s ← H .top() ▷ Apply CELF here for k > 1

20: sθ [ℓ] = s
21: s

min
← empty list

22: s
min
[ℓ] ← minθ sθ [ℓ]∀ℓ

23: return
∑
s
min

We extend DAGGER with a query that computes SEMR for a

single seed (Algorithm 1). Let д′ = (V ′,E ′) be the DAG that cor-

responds to д. For each node v ′ ∈ V ′, we maintain a label v ′.r
as the set of nodes u ′ ∈ V ′ reachable from v ′: v ′.r = {u ′ ∈
V ′ |∃ pathv ′ → u ′} ∪ {v ′}, and a heap H organizing tree root

nodes (i.e., nodes with zero in-degree) by the sum of reachable

SCC sizes. Upon the insertion of a new nodew to д, we collect the
ids ofw’s SCC (Line 3) and invalidated SCCs R (Line 4), calculate

the reachw ′.r of the SCCw belongs to,w ′ ∈ д′, based on its out-

neighbours (Lines 5-6), and update the labels of all ascendant nodes

ofw ′, u ′ reachable fromw ′ in the reverse DAG (д′)T , accordingly
(Lines 8-11). Upon reaching an ascendant root nodeu ′, we updateH
(Lines 10-11). To compute SEMR for a single seed, we obtain max-

imum tree sizes from H (Line 19). For k seeds, we pick k nodes

from H , prioritized by marginal gain in terms of reachable nodes

in lazy greedy fashion [42], as the objective function is submodular.

The performance of SEMR computation depends on set union and

subtraction operations (Lines 6 and 9).
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4 EXPERIMENTAL STUDY
We investigate the nature of all three measures and study their

interrelationships. Experiments ran on a 378G RAM Intel Xeon CPU

@ 3.10GHz running Ubuntu 18.04. All algorithms are implemented
1

in C++ and compiled with gcc 7.4 with -O3 optimization. We set

timeout 10h per one measure computation. Runtime and timeout

do not include time for the strategy set Θ computation, which

is the same for all measures. We assign edge probabilities either

randomly, or uniformly. For random assignment, we pick a value

for each edge uniformly from 0 toW , whereW is a parameter. For

uniform assignment, we assign a certainW value to each edge. We

refer to these two types of assignment as Random and Uniform.

SyntheticNetworks.We study power-law networks, represented
by the Barabási-Albert (BA) model, and homogeneous networks,
represented by the Gaussian Random Partition (GRP) [8] and

Watts Strogatz (WS) models. For BA, we use the algorithm of

Holme and Kim [23], which extends the original Barabási-Albert

model, yet use the BA label as its basis. The algorithm randomly

creates µ edges for each node in a graph, and for created edge with

a probability p adds an edge to one of its neighbors, thus creating a

triangle. GRP groups nodes so that group sizes follow a Gaussian

distribution with expected size s and variance of size equal to s/v ,
where v is a shape parameter. It uses a probability value pin for

edges across nodes in the same group, and pout otherwise. WS
models self-organizing small-world systems [59], with two param-

eters: l indicates how many neighbors each node is joined with in

a ring; p is a probability of edge rewiring, inducing disorder.

Network |V | [·103] |E | [·103] dmax, d cl
Blogs 1.2 19.0 467, 31 0.336

Minnesota 2.6 3.3 5, 2 0.024

VK 2.8 40.8 288, 29 0.247

Advogato 6.6 47.3 947, 14 0.211

DBLP 12.6 49.7 710, 8 0.117

Brightkite 56.7 212.9 1134, 8 0.117

Gnutella 62.6 147.9 95, 5 0.007

Stanford 281.9 2312.5 38626, 16 0.597

Table 2: Real-world datasets. dmax ,d is maximum and aver-
age degree, cl is average clustering coefficient [51].

Real-world networks. We use real-world datasets of various

sizes and degree distributions: Blogs contains front-page hyperlinks

between blogs during the 2004 US election [1, 30]. DBLP is a citation

network of scientific papers [30, 32]. Advogato is a network of trust

relationships in an online community platform for free-software

developers [30, 41]. Minnesota is a road network [48]. VK is a social

network with influence probabilities derived from the content of

posts published by users [37]. Brightkite is a location-based social

network [13]. Gnutella is snapshots of the Gnutella peer-to-peer

file sharing network [31]. Table 2 lists our real-world datasets.

4.1 Choice of Algorithm for RIM Computation
As a preliminary experimental choice, we study the performance

of methods for RIM calculation, including algorithms and baselines

proposed in [21]. We use the IMM algorithm for influence maxi-

mization [56] as a non-robust baseline. We include SingleGreedy

with the CELF (i.e., lazy greedy) optimization, proposed in [21],

and also its variant without it, given that, on this non-submodular

problem objective, the CELF optimization affects quality.

1
The code is available at https://github.com/allogn/robustness.

(a) BA (b) BA (c) BA

(d) GRP (e) GRP (f) GRP

(g) WS (h) WS (i) WS

Figure 1: RIMunder node attacks. BA (n=5 · 103, ℓ=50,k=100,
µ=2), WS (n=5 · 103, ℓ=200, k=70), GRP (n=3 · 103, ℓ=180,
k=90).W =0.1, SatGreedy: γ =10−4.

We compare the performance of algorithms in the computation

of the unaggregated RIM objective, with BA, GRP, andWS networks.

Figure 1 illustrates the results vs. graph size n, seed set size k , and
number of attacked nodes ℓ. We observe that SingleGreedy with

and without CELF matches or outperforms SatGreedy, while IMM

has a disadvantage that grows with ℓ, imprinting the significance

of using robust algorithms.

(a) Runtime of SRIM baselines (b) Objective of SRIM baselines

Figure 2: SRIM on BA, p=0.4, µ=10,W =0.3, k=50.
Now we drop the non-robust IMM algorithm out of the com-

parison, and study the performance of robust algorithms, with the

DIM algorithm embedded, on the runtime for computing, and value

of, the aggregate SRIM robustness measure on the BA network.

Figure 2 shows our results for k = 50 seeds. As in Figure 1, Sin-

gleGreedy stands out in terms of objective, at the cost of higher

runtime. The difference in objective is more prominent now, as we

aggregate the measure over all values from 1 to ℓ. The runtime for

computing Θ is negligible, reaching 4s for the largest network.

These results indicate that SingleGreedy (without CELF) of-

fers the best effectiveness, but significantly worse efficiency. Sin-

gleGreedy with CELF matches the performance of SingleGreedy,

matches or outperforms that of SatGreedy, is more efficient, and

does not require any accuracy parameterγ , as SatGreedy does. Ergo,
we opt for SingleGreedy with CELF in the following.
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4.2 Measure relationships
We now study the relation between measures and their sensitivity

to the set of attack strategies, using two homogeneous networks

(Minnesota and GRP) and two power-law networks (Blogs and VK).

(a) k = 50,W = 0.8 (b)W = 0.5 (c) k = 50

Figure 3: Measures on Minnesota road network.
Figure 3a plots plain EMR, RNI, and RIM values, without aggre-

gation, vs. ℓ on Minnesota. Values decrease gradually, revealing

some irregularities of graph structure in the middle range of ℓ. EMR

and RNI follow a similar pattern, while RIM differs. For instance,

from ℓ = 1000 to 2000 EMR and RNI present two abrupt drops

at the same value of ℓ. RIM has more and smaller irregularities.

Figures 3b and 3c present the summed measures (SEMR, SRNI, and

SRIM) vs. seed set size and influence probabilitiesW , respectively.

The difference between them grows especially with seed set size.

Figure 4: Effect of 7 attack strategies. Minnesota road net-
work,W =0.5, k=50, Random.

Figure 4 presents a decomposition: instead of a minimum over all

strategies, we plot the expected influence per strategy, with the seed

set selected by each algorithm.We observe that EMR and RNI follow

the same trend also for each strategy separately. This is especially

conspicuous with NetShield, which shows poor performance in its

immunization objective for small values of ℓ, but swiftly improves

in the middle range; it then becomes the most effective strategy for

a short ℓ range, but looses that position to PageRank. Remarkably,

results for RNI presents the same outline, but scaled to a smaller

values of active nodes. On the other hand, RIM exhibits a different

behaviour, as all strategies mostly produce the same response to

the selected seeds. This result illustrates the difference of RIM from

the other two measures: RIM is based on the worst case among

the complete set of strategies by nature, hence can afford to let the

selected seeds perform almost equally well on any attack.

Figure 5a plots the differences EMR-RNI and RNI-RIM vs. ℓ on

the VK network. RNI-RIM has a convex shape with a maximum

in the middle-range ℓ, while EMR-RNI is almost zero in the whole

range. This behavior differs from the one we observed with the BA

and DBLP networks, where there is a peak on EMR-RNI. Figure 5b

plots non-aggregate measure values for k = 40. RNI is very close to

EMR along the whole range of ℓ; on the other hand, RNI-RIM also

peaks close to the maximum curvature of lines. Figure 5c shows

that the effect becomes stronger with larger k , aggregating over all

ℓ values: SRNI remains close to SEMR, while SRIM diverges from

the others; this divergence implies that, on power-law networks,

knowledge about the attack, gained when moving from RIM to

RNI, is more valuable than knowledge about the stochastic edge

outcome, gained when moving from RNI to EMR.

(a) Deltas (b) Measures vs. ℓ (c) Sums vs. k

Figure 5: Dependency of measures on VK social network.

Figures 6 and 7 show the proximity among the three aggregate

measures on the Blogs and GRP networks. On the power-law Blogs

network, the trend is similar to VK, with RNI close to EMR. However,

on the homogeneous GRP network, RNI is close to RIM for the whole

spectrum of network shape parameters. We conclude that network

topology determines what gain of knowledge matters most; on

a homogeneous network, knowledge about the stochastic edge

outcome is more valuable than knowledge about the attack.

(a) k =50,W =0.8 (b)W =0.5 (c) k =50

Figure 6: Dependency of measures, Blogs network. Random.

Figure 7: Dependency on network parameters. GRP. n=2500,
s=100, pin=0.05, pout =5 · 10−4, k=10,W =0.3, Random.

Another interesting feature is the shape of the tail of distributions

(Figures 4, 5b and 6a). There exists a value of ℓ = ℓ′, such that all

three measures converge to the value of k as ℓ grows towards ℓ′,

but for ℓ > ℓ′ RIM drops to 0, while others remain at k . The drop
of RIM is concave, with a gap of first derivative. The region ℓ > ℓ′

corresponds to the case where the attacker blocks all nodes by at

least one strategy for any seed set. That strategy determines RIM.

However, for EMR and RNI, seeds are selected after the attack,

therefore there are at least k non-blocked nodes.

4.3 EMR vs RNI: the diffusion entropy
The EMR and RNI measures both represent cases in which the

attacker has to prepare for the worst-case, i.e., the case in which

the seeder is aware of the attacker’s actions. In other words, both

these measures correspond to robust immunization problems. Their
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(a) Dr , Minnesota, k = 10 (b) Peak Location, BA (c) D vs. ∆, BA (d) Fixed-size network, BA

Figure 8: Local maximum of D; BA parameters: n=1000, p=0.4, µ=10; (b): k=5; (d): k=1, Θ= {Degree}.

difference lies in the fact that, under EMR, the seeder is also aware

of the probabilistic network outcome. Thus, the difference between

these two probabilistic network robustness measures expresses the

surprise effect or, so to speak, negative entropy that a probabilis-

tic diffusion outcome can present to the attacker; it shows how

much worse the spread can be in the case of a seeder aware of

probabilistic outcomes in comparison to the best guess of a seeder

unaware of such outcomes. We study the impact of this difference

in more detail, using uniform probability assignment so as to focus

on structural effects. We consider the absolute difference D among

the two measures; and also the relative difference with respect to

RNI, Dr .

D = EMR − RNI, Dr =
EMR − RNI

RNI

(9)

Figure 8a shows the surface of Dr for different values of ℓ and

W on the Minnesota network. Dr is larger for smaller number of

removed nodes ℓ, and drops with larger edge probabilities. Still, it is

not monotonic vs.W ; it obtains a maximum value aroundW = 1.5,

and the peak is more explicit with smaller ℓ. Figure 8b shows that

this non-monotonic behavior of Dr also appears with respect to ℓ

on a BA network, and indicates exactly where the peak is located.

Compared to Figure 8c, where peaks are presented only for a single

seed, we see that on Figure 8b the peak has larger width.

D also relates to the relative marginal gain seeds addition by the

seeder. We define δθi (ℓ) as the relative marginal gain of the second

seed for any strategy θi ∈ Θ under ℓ attacked nodes:

δθi (ℓ) =
maxS : |S |=1 σθi (ℓ)(S) −maxS : |S |=2 σθi (ℓ)(S)

maxS : |S |=1 σθi (ℓ)(S)
(10)

We then calculate a new quantity ∆(ℓ) as the maximum differen-

tial quotient of δ over all strategies for each ℓ:

∆(ℓ) = max

θi ∈Θ

{
δθi (ℓ) − δθi (ℓ − 1)

}
(11)

Figure 8c juxtaposes D and ∆, plotted with moving average

smoothing. Their two peaks align, with a slight shift to the right

for ∆. This finding implies that, on BA networks, the values of ℓ

for which the network ceases to be strongly centralized, hence ∆
flattens out, would also cause the highest surprise to an attacker.

We exploit this observation to generate networks of enhanced
robustness: we fix size to 1000 nodes, yet first generate a network of
larger size and then remove superfluous nodes by the Degree strat-

egy. We call the amount of nodes first added and then removed shift.
Figure 8d plots D vs. shift. Shifting improves network robustness

in terms of D; we create networks in which a seeder has the po-

tential to perform surprisingly well against an attacker. The lower

subfigure plots the number of edges in the obtained network; as

there is no correlation between the peak of D and number of edges,

the peak must be attributed to the network’s structure.

(a) Original (b) SRIM-based (c) SEMR-based

Figure 9: Robust BA networks
4.4 Case Studies
We provide examples of robust networks using the local search

heuristic of [53], which randomly samples pairs of edges, e.g., pair

{(v1,u1), (v2,u2)}, and rewires them to {(v1,u2), (v2,u1)} if that
leads to a higher robustness measure. We experiment with SRIM

and SEMR, since SRNI exhibits similar behavior to SEMR (see Sec-

tion 4.2). The sampling proceeds until |E | iterations bring no change.
We experiment with a random BA network of 100 nodes, uniform

edge probability of 0.5, and 2 seeds. Figure 9 shows the original

network (non-robust), and two networks obtained by the aforemen-

tioned procedure for SRIM and SEMR, respectively. Colors indicate

similar node degrees, blue for larger, green for medium, and red

for smaller. We plot the networks using the Fruchterman Reingold

algorithm [6]. We note that the network targeting SEMR has a

layered onion-like structure, similar to robust static networks [19],

while the other two networks do not show evident patterns.

5 CONCLUSIONS
We introduced three aggregate measures that evaluate the diffusion

robustness of probabilistic networks, anchored on a seeder who

orchestrates an Independent Cascade diffusion under node attacks.

Each measure is based on a notion of worst-case maximum ex-

pected spread. We introduced efficient algorithms to calculate these

measures and sample-based versions thereof that enable their com-

putation on realistic networks of up to 10
5
nodes. Our experimental

study determined that, on scale-free networks, measures sharing

the same notion of seeder awareness regarding the adversarial at-

tack are closer, while those sharing the same notion of awareness

regarding the network instance are closer on homogeneous net-

works. Our results provide tools for assessing the robustness of

real-world probabilistic networks, and offer guidelines on how to

achieve and enhance network robustness.
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