
Resource Allocation in Networks
Alvis Logins

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Resource Allocation in Networks

A Dissertation
Presented to the Faculty of Science and Technology

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Alvis Logins

February 17, 2020

Abstract

Given the spatial locations of customers and a road network, where to build
new facilities that would satisfy the customers needs? How to allocate vac-
cination centres in a country to suppress a virus epidemics? Which Twitter
accounts can advertise a piece of news to the largest auditory and in the most
robust way? Prima facie, the questions are disparate, but all derive from the
generic problem of Resource Allocation in Networks. Given network nodes rep-
resenting a set of consumers and a set of possible resource locations, the goal
is to minimize the loss or maximize the profit of allocating a limited budget of
indivisible resources. Interacting with a resource occurs via a connection from
supply to demand nodes through network edges with certain characteristics
like capacity, cost, weight, or probability. Such a process may occur with or
without a restriction of flow preservation at nodes, by which inflow to a node
is equal to outflow, resulting to a transportation in the former case and to a
diffusion in the latter case.

This thesis investigates methods and solutions for this family of resource
allocation problems with respect to the transportation and diffusion models,
building on previous work in the fields of Operations Research, Machine Learn-
ing, and Data Management, considering temporal and stochastic components.
We propose novel techniques to calculate model parameters and to achieve
objectives of convenience in facility location, fairness in vehicle cruising, and
robustness in diffusion control problems, with a good balance between scal-
ability and quality. Our experimental studies based on real-world datasets
show the efficiency and effectiveness of the solutions.

i

Resumé

Givet kunders geografiske placering og et vejnet, hvor skal man så bygge nye
faciliteter, som kan tilfredsstille kundernes behov? Hvordan identificerer man
de bedste placeringer af vaccinationscentre for at stoppe en virusepidemi?
Hvilke Twitter-konti kan annoncere en nyheder til den største målgruppe på
den mest robuste måde? Ved første øjekast er spørgsmålene forskellige, men
alle stammer fra det samme generiske problem - ressourcetildeling i netværk.
Givet netværksknuder, der repræsenterer et sæt forbrugere og mulige ressour-
ceplaceringer, er målet at minimere tabet eller maksimere overskuddet ved
at allokere en begrænset mængde af udelelige ressourcer. Interaktion med en
ressource sker via en forbindelse fra udbuds- til efterspørgselsnoder gennem
netværkskanter, som har egenskaber så som kapacitet, omkostninger, vægt
eller sandsynligheded. En sådan proces kan forekomme med eller uden en
begrænsning af strømningskonservering ved knudepunkter, hvor indstrømn-
ing til en knude er lig med udstrømning, hvilket resulterer i en transport i
førstnævnte tilfælde og en diffusion i sidstnævnte tilfælde.

Denne afhandling undersøger metoder og løsninger til gruppen af ressource-
fordelingsproblemer med hensyn til transport- og diffusionsmodellerne, baseret
på tidsmæssige og stokastiske egenskaber. Afhandlingen bygger på tidligere
arbejde inden for områderne operationsanalyse, maskinlæring og dataforvalt-
ning. Vi foreslår nye teknikker til beregning af modelparametre og til at
opnå målsætninger om bekvemmelighed i facilitetsplacering, retfærdighed i
køretøjscruising og robusthed i diffusionskontrolproblemer med en god bal-
ance mellem skalerbarhed og kvalitet. Vores eksperimentelle studier, som er
baseret på virkelige datasæt, viser ydeevnen og effektiviteten af løsningen.

iii

Contents

Abstract i

Resumé iii

Contents v

I Overview 1

1 Introduction 3

2 Bipartite Matching 7
2.1 Assignment Problem . 7
2.2 From Assignments to Flows . 8
2.3 From Capacity-Scaling to Cost-Scaling 11
2.4 Applications of Bipartite Matching 12

3 Standard Tools 13
3.1 Linear Programming . 13
3.2 Submodularity . 16
3.3 Dynamic Programming . 18
3.4 Monte-Carlo . 18

4 Facility Location 21
4.1 Classification of Facility Location Problems 21
4.2 Classic Facility Location . 22
4.3 Scalable Facility Location . 23
4.4 Stochastic Facility Location . 24
4.5 Route Planning . 24
4.6 Dynamic Pricing . 26

5 Decisions Over Time Under Uncertainty 31
5.1 The Multi-Armed Bandit . 31
5.2 Reinforcement Learning . 33

6 Diffusion in Networks 37
6.1 Influence Maximization . 37
6.2 Diffusion and the Facility Location problem 38

v

vi CONTENTS

6.3 Scalable Spread Control . 39

7 Robustness and Fairness 41
7.1 Fairness as a Form of Robustness . 41
7.2 Fairness and Robustness in Resource Allocation 42
7.3 Connections to Other Areas . 42

II Publications 45

8 Multicapacity Facility Selection in Networks 47
8.1 Introduction . 48
8.2 Problem Statement . 50
8.3 Related Work . 50
8.4 The Wide Matching Algorithm . 52
8.5 Matching optimality . 59
8.6 Analysis of WMA . 61
8.7 Experiments . 62
8.8 Conclusion . 75

9 Fair Cruising 77
9.1 Introduction . 77
9.2 Background . 78
9.3 Problem Statement . 82
9.4 Benchmark Environment . 83
9.5 Solutions . 86
9.6 Experiments . 90
9.7 Conclusions . 97

10 Network Immunization 99
10.1 Introduction to Node Immunization 100
10.2 Background . 102
10.3 Methodology . 104
10.4 Experimental Results . 111
10.5 Introduction to Diffusion Control . 113
10.6 Framework . 115
10.7 Applications . 119
10.8 Conclusions . 120

11 On the Robustness of Cascade Diffusion under Node Attacks 123
11.1 Introduction . 124
11.2 Background . 125
11.3 Diffusion Robustness Measures . 130
11.4 Experiments . 139
11.5 Conclusions . 154

Bibliography 155

Part I

Overview

1

Chapter 1

Introduction

During World War II an excessive amount of research groups were formed
by the British government in order to find better analytical methods for the
utilization of military resources. That period is arguably considered the be-
ginning of the Operational Research (OR) field [245]. OR is a branch of
applied mathematics that overlaps with mathematical optimization and sta-
tistical analysis. The general model in OR can be formulated as a constrained
maximization of profit or minimization of loss. Investment, Production plan-
ning, Urban Development planning are just a few examples where OR is an
indispensable tool. Main methods include Linear Programming, Integer Pro-
gramming, Dynamic Programming, Network Programming, Nonlinear Pro-
gramming, and such heuristics as Simulated Annealing, Genetic Algorithms,
and Local Search [245]. Resource Allocation in Networks (RAN) is one of
the central class of problems in OR, appearing as the Facility Location prob-
lem [84], Budget Allocation problem [239], Online Assignment problem [39],
Firefighter problem [10], and others [245], depending on the type of resources
and constraints in a network.

Data Science (DS) has opened new horizons in Resource Management,
and Predictive Analytics in general. It mixes Statistics, Machine Learning,
Database Management, and Distributed Systems [9], to deal with large scale
datasets, and attack real-world problems too complex for traditional math-
ematical modeling and existing OR computational methods. Such tools as
Clustering, Data Indexing, Association Rules, Data Visualization, and Ma-
chine Learning with Neural Networks in particular, are typically associated
with modern DS [78]. A problem may appear in DS literature under a unique
name, although being partially addressed in OR. Such examples are the Opti-
mal Location Query [57] problem, a special case of Facility Location problem,
and the Skyline Query [38] problem, known in OR as Pareto-efficient Resource
Allocation [141] problem. Nevertheless, there are differences in methodolo-
gies and scalability of the solutions, designating DS as the Data-Intensive
field [116].

3

4 CHAPTER 1. INTRODUCTION

Resource Allocation is a broad topic that deserves a field by itself. We
investigate a class of optimization problems of allocating limited indivisible
resources at nodes of a network. In the following chapters, we summarize
existing solutions in the fields of OR and DS, show their advantages and
limitations. With an emphasis on scalability, we propose novel algorithms
based on practical heuristics and data management techniques.

The thesis is divided into two parts. In the first part, we give an overview
of our research and a high-level description of the field. The second part
consists of our publications and extensions. Each chapter of the second part
corresponds to one or two publications and a preface with general information
on the content. Topicwise, our study is organized based on the presence of
temporal and stochastic components in a model, and interaction principles
between participating agents (consumers) and the resource.

We distinguish two types of interaction, namely a flow-type and a diffusion-
type. Models with the flow-type interaction are also known as transportation
network models. Consumers obtain a resource though a flow in a network.
The amount of flow coming into a node must be equal to the amount of
flow coming out of the node, for all nodes except the locations of consumers
and resources. This interaction type models transportation systems, supply
chains, traffic in computer networks, currents in a power grid. In contrast,
diffusion-type interaction does not impose the flow preservation restriction.
For instance, a source of information in a social network, serving as a re-
source, can reach each subscriber (consumer), independently on the number
of subscribers. Likewise, an infected person can spread a disease to any num-
ber of fellows, independently on how many people could have had infected this
person.

We start with a static and deterministic RAN with the flow-type interac-
tion. The model does not have a temporal component and does not deal with
uncertainty. Chapter 2 provides an introductory RAN problem of this cate-
gory, the Bipartite Matching problem, followed by Chapter 3 with some basic
tools used in RAN. Chapter 4 introduces the Facility Location problem with
an emphasis on the static deterministic case, and also briefly discuss dynamic
and stochastic versions of the problem. Facility Location is a flow-type RAN
that relates to road networks and involves spatial data management. Chapter
8 presents a new scalable heuristic for the static deterministic Facility Location
problem.

Then, we move to the dynamic and stochastic RAN with the flow-type
interaction, where a model supports decisions over time under uncertainty.
Chapters 5 and 9 present our investigation of this type of problems. We focus
on the models that follow the Markov Decision Process framework, where an
optimization algorithm has to train a model that is able to predict future
profitability of an allocation decision. We are particularly interested in how
fair is the trained model with respect to consumers. In the second part of the

5

thesis, we propose our adaptations of existing techniques that boost fairness
in the context of taxi fleet management.

Further, Chapter 6 gives an overview of RAN with the diffusion-type in-
teraction, also known as diffusion network models. Most of the problems of
this interaction type are both dynamic and stochastic, although we mention
some exceptions. We focus on RAN for information spread control in social
networks, although our study can be applied for other diffusion-type phenom-
ena, e.g. epidemic prevention. An allocated resource can be either a source
of a spread (a seed), e.g. a community blog, or a barrier for the spread. An
example of a barrier allocation is the Node Immunization problem, where a
limited amount of vaccines need to be allocated in a geosocial network to
suppress a virus. Another example is defending nodes of a computer network
to prevent a spread of malware. In Chapter 10 we first conduct an exper-
imental study where we compare the state-of-the-art solutions to the node
immunization problem. Then, we describe a novel the framework for training
a real-world network model for information spread, which we also used in the
first part of the chapter.

Finally, we study a game-like setting, when the allocation of barriers for
a spread is combined with the allocation of seeds. The quality of seeding
is evaluated by its robustness against immunization. Chapter 7 shows the
connection between the robustness, fairness, and Game Theory. Chapter 11
presents our research on robustness of diffusion. We propose new measures of
robustness, evaluation algorithms, and heuristics to improve the robustness.

The research is primarily conducted by the author of the thesis. The ideas
are the result of a joint effort of the student, the main supervisor and the
external collaborators. Coding, methodology, experimental study, text of the
introduction are authored by the student. The text of publications is written
by the student and edited by the main supervisor.

Chapter 2

Bipartite Matching

Given a set of workers and tasks, represented as a bipartite graph, the ob-
jective of the Bipartite Matching problem is to find matches between workers
and tasks such that the cost of the matches is minimized. In this chapter, we
provide a brief historical overview of this introductory RAN problem, starting
with a special case of the problem, the balanced Assignment problem, where
the number of workers is equal to the number of jobs and each worker can
be assigned to any job. Then, we introduce concepts of alternating paths and
matching augmentation. Next, we introduce the problem of flow cost min-
imization, show its connection to the Bipartite Matching problem, define a
residual graph, the Capacity-Scaling and the Cost-Scaling methods. Gener-
alizations of the Bipartite Matching problem to the domains of dynamic and
stochastic models are included in the following chapters. In Chapter 8 of the
second part, we use the introduced definitions, concepts and methods to derive
a novel RAN algorithm.

2.1 Assignment Problem

In 1931 Dénes König, a Hungarian mathematician and author of the first book
on graph theory [179], proved the König’s theorem, that describes an equiv-
alence between the maximum matching and the minimum vertex cover prob-
lems in bipartite graphs. In the same year, another Hungarian mathematician
Jenö Egerváry independently proved the equivalence in a more general case
of weighted graphs. In 1955 Harold Kuhn published the famous Hungarian
algorithm [149], deriving the theoretical basis of the algorithm from the works
of König and Egerváry.

The Hungarian algorithm solves the Assignment Problem. We outline the
graph formulation of the algorithm. Let G = (V, E) be a complete bipartite
graph. A set of vertices is divided into two subsets V = S ∪D, representing
workers and jobs (Figure 21a). The task is to find a perfect matching, a subset
of edges E′ ∈ E, such that each vertex is incident exactly to one edge in E′.

7

8 CHAPTER 2. BIPARTITE MATCHING

During the execution of the algorithm, each vertex maintains a potential (a
label) p(vi)→ R, that satisfies two invariants

p(vi)− p(vj) ≤ c(vi, vj)

p(vi) > 0

where (vi, vj) ∈ E, and c(vi, vj) is a cost (a weight) assigned to the corre-
sponding edge. The algorithm starts with p(vi) = 0, ∀i, and with a direction
of edges from S to D. At each step, the algorithm does a search of existing
paths from S to D along edges where potentials of incident nodes are tight:

p(vi)− p(vj) = c(vi, vj)

Such paths are called alternating, since edges along a path alternate the direc-
tion in respect to two node sets of the bipartite graph. An alternating path
that begins and ends with a free (not-matched) node is called an augmenting
path. For each path found, the algorithm reverse edges along the path. The
reversing operation is called matching augmentation. When there are no such
paths left, the potential of the reachable nodes in S is increased by

∆p = min
i,j
{c(vi, vj)− p(vi)− p(vj) | vi ∈ S, vj ∈ D}

The potential of the reachable nodes in D is decreased by the same value.
A set of edges with orientation from D to S represents the matching. The
algorithm terminates when the matching is perfect.

The Hungarian algorithm stands first in the line of combinatorial opti-
mization algorithms that use the duality principle. The principle says that an
optimization problem can be viewed from a perspective of the primal or the
dual problem. The difference between the solutions to the primal and the dual
problems is called the duality gap. If the gap is zero, then the optimal solu-
tions are equal between problems (the strong duality theorem). Furthermore,
any feasible solution to the dual problem is an upper bound to any solution of
the primal problem (the weak duality theorem). In the case of the Hungarian
algorithm, finding the potentials is a dual problem to the matching problem.
The duality theorems were first conjectured by John von Neumann in 1947,
and are one of the central theorems in mathematical optimization theory.

2.2 From Assignments to Flows
In 1956, Ford and Fulkerson extended the Hungarian algorithm to the problem
of computing the maximum flow in a network [86]. Given a source node,
a sink node, and edge capacities, the Ford-Fulkerson algorithm applies the
same concept of reversing utilized edges as the Hungarian algorithm. At each
iteration, the algorithm finds the maximal flow between the source and the

2.2. FROM ASSIGNMENTS TO FLOWS 9

sink. The flow is a path together with the maximal edge capacity along
that path. Then, capacities of the edges along the path are decreased, while
the capacity of the virtual edges in the opposite direction is increased, as an
analogy of reversing edges in the case of the Hungarian algorithm. The graph
with changed capacities and virtual edges is called a residual graph. Once
there is no any flow from the source to the sink in the residual graph, the
algorithm terminates.

The Blossom algorithm by Edmonds [80] was inspired by the Ford-Fulkerson
algorithm [75], and released almost a decade after its publication. It con-
structs the maximum matching in a general graph. The idea is to iteratively
find augmenting paths, perform matching augmentation, and contract the al-
ternating paths that create cycles. One such cycle is called a blossom, which
then can be represented by a single vertex in further algorithm iterations.
The algorithm has polynomial complexity, and motivated Edmond to propose
polynomial time as a measure of goodness of algorithms in Computer Sci-
ence [86]. Furthermore, as a part of the analysis of the algorithm, Edmonds
created a technique of describing a convex hull of matching solutions by linear
inequalities, that allowed to prove various theorems in matching theory as
special cases of the Duality theorem [179]. This resulted in a separate branch
of Combinatorial Mathematics – Polyhedral Combinatorics [179].

The Ford-Fulkerson and Blossom algorithms appeared as a cornerstone in
the line of optimization algorithms in networks. Later, the problem was gener-
alized to the Minimum Cost Flow Problem, and further to the Minimum Cost
Circulation Problem (MCCP). Edge weights were introduced, representing the
cost of sending a unit of flow along an edge. The goal of the problems is to
find a flow with the minimum cost. In MCCP, instead of source and sink con-
straints, flow requirements are defined through lower bound labels on edges.
MCCP can be reduced to the most general formulation of the assignment
problem, where matches are weighted, and there may be several matches, or
none, per worker or per job. We refer to this generalization of the assignment
problem as the Bipartite Matching problem.

The reduction from MCCP to the bipartite matching problem is illus-
trated in Figure 21. Figure 21a shows the initial complete bipartite graph,
with workers S and jobs D. Assume edges are labeled by weight (a cost of
assignment of a worker to a job), and capacity (number of times a worker can
be assigned to a job). Similarly to the Hungarian algorithm, we add directions
to edges from S to D. Then, we add two extra nodes a and b, representing
a source and a sink (Figure 21b). a is connected to each node in S, and the
capacity of edges between a and S is set to the total maximum number of
jobs a particular worker can handle (let us call it a worker capacity). Finally,
let the total required flow from source to sink be equal to the sum of worker
capacities. For simplicity, assume that the sum is equal to the number of
jobs. Finding a flow from source to sink of a minimal cost will correspond
to the matching of the minimal cost, given that one unit of flow from S to

10 CHAPTER 2. BIPARTITE MATCHING

D represents one match. This completes the reduction to the Minimum Cost
Flow problem. Further, let us add an arc from b to a, and set the lower bound
for the flow along that arc to the required flow from source to sink (Figure
21c). Then, a and b become regular nodes with the flow preservation, and the
problem reduces to MCCP. Note, that instead of a complete bipartite graph
we can also restrict matchings to a set of feasible matches. In case the sum
of worker capacity is not equal to the number of jobs, we should add an extra
job (or extra worker), and allow to be matched with it for an infinitely large
cost. The details of this case can be found in [257].

(a) Assignment (b) Minimum Cost Flow (c) Minimum Cost Circulation

Figure 21: The Bipartite Matching problem

Methods that use the concepts of path augmentation and a residual graph
are known as Capacity-Scaling methods. One famous representative is the
Edmonds-Karp algorithm [81], that finds the residual graph using Breadth-
First Search, instead of Depth-First Search used by Ford and Fulkerson. An-
other seminal Capacity-Scaling method is the Successive-Shortest Path Algo-
rithm (SSPA) by Derigs (1981) [75]. It computes the minimum weight perfect
matching problem in a general graph. It uses the shortest paths for build-
ing a residual graph, and a labeling procedure that is a modification of the
Blossom algorithm [75]. Although the idea of using the shortest paths in the
implementation of the Hungarian algorithm existed since 1960th [46, 118], the
advantage of SSPA is that it allows a simple and efficient implementation, and
was first to use purely combinatorial arguments, without going into polyhe-
dral combinatorics [75]. It makes the algorithm especially appealing to the
DS community. A special case of SSPA for bipartite graphs uses a simpler
distance-based labeling technique [5, 257]. Nodes are assigned potentials, sim-
ilarly to the potentials used by the Hungarian algorithm, that indicate the
proximity of the node to the end of the shortest alternating path passing the
node. The labeling technique significantly reduces the time required for find-
ing an augmenting path. In 2010, Leong Hou U et al. [257] observed that
the efficiency of SSPA in this case can be significantly improved by pruning
redundant edges in a bipartite graph, using an additional data structure that
keeps incident edges in sorted order and a tight threshold that depends on

2.3. FROM CAPACITY-SCALING TO COST-SCALING 11

the potentials. We improve on this result and utilize the pruning technique
to develop a scalable RAN algorithm, described in Chapter 8.

2.3 From Capacity-Scaling to Cost-Scaling

The idea of distance-based potentials was first presented by Goldberg and
Tarjan [100] as a part of the Push-Relabel algorithm for computing maximum
flows in a network [5]. Let an edge be admissible in respect to the potential
function iff

p(vi)− p(vj) = c(vi, vj) + 1

A flow though the admissible edges is called a preflow. The algorithm itera-
tively increases the preflow toward the sink (the push operation), and increases
potentials of nodes to a minimum value required for at least one admissible
out-edge (the relabel operation). The algorithm terminates when there is no
applicable operation to be done.

The concept of a preflow was invented earlier by a Soviet mathemati-
cian Karzanov [100]. The Push-Relabel algorithm is a result of applying the
distance-based labeling to the algorithm of Karzanov. A generalization of the
Push-Relabel algorithm is the Cost-Scaling methods for the Minimum Cost
Flow problem. The idea of Cost-Scaling was originally proposed by Röck
[216], and then used by Goldberg and Tarjan [101] in the ϵ-scaling algorithm.
The algorithm relaxes the admissibility, allowing a preflow to follow paths
which are approximately admissible, such that

p(vi)− p(vj)− c(vi, vj) ≤ ϵ

Then, ϵ is iteratively decreased in a geometric progression, followed by the
pushing and the relabeling operations.

Cost-Scaling methods are considered ones of the most efficient flow opti-
mization algorithms [6]. Furthermore, they can be efficiently parallelized and
applied to the bipartite matching problem [170]. A distributed counterpart
of the ϵ-scaling algorithm is called an Auction algorithm, presented by Bert-
sekas in 1979 [29]. On the negative side, Cost-Scaling methods can not benefit
from sequential consideration of edges, as in SSPA [170], so the computational
optimization methods of Leong Hou U et al. [257] do not apply.

Notably, there exists a combinatorial flow optimization algorithm that does
not use any scaling, the Cycle-Cancelling algorithm, also proposed by Gold-
berg and Tarjan [100], as well as the Double-Scaling algorithm that uses both
scaling methods simultaneously [4]. All algorithms are strongly polynomial.
For a comprehensive summary of the bipartite matching problem and flow
optimization algorithms, refer to [5, 46, 179].

12 CHAPTER 2. BIPARTITE MATCHING

2.4 Applications of Bipartite Matching
Solutions to the Bipartite Matching problem can be used in some problems
even if there is no direct reduction to the Bipartite Matching problem [179].
Examples are the Chinese Postman problem (minimization of distance while
traversing all streets, polynomially solvable), the Travelling Salesman problem
(minimization of distance while visiting all intersections, np-hard), a mini-
mum weight spanning tree problem, and variations of the Facility Location
problem [46, 126, 224]. The WMA algorithm presented in Chapter 8 is an-
other example. Generalizations of the Bipartite Matching problem, namely
Online and Stochastic Bipartite Matching, appear in Machine Learning, On-
line/Adaptive Learning and are commonly considered in allocation problems
over time under uncertainty. We discuss this generalizations in Chapters 4
and 5 of the thesis.

Chapter 3

Standard Tools

In the following sections, we introduce several standard optimization meth-
ods, used across other chapters of the thesis. Linear Programming (LP) is a
well-known approach for optimizing a linear objective function. We use it as
one of the baselines in Chapter 8, and discuss the applicability of LP in the
rest of the RAN problems in the corresponding chapters. Submodularity is a
property of an objective function that allows applying a wide range of approx-
imation methods for maximization and minimization tasks, including a simple
greedy node selection. This property is a basis for the state-of-the-art algo-
rithms for diffusion control, which we study in chapters 10 and 11. Finally, we
briefly discuss Dynamic Programming and define the Bellman equation, used
in chapters 5, 6 and 9, and the Monte-Carlo method, used in chapters 5, 6,
10 and 11.

3.1 Linear Programming
Starting from the works of Leonid Kantorovich in 1930th and the duality
principle by John von Neumann in 1947, Linear Programming has become
the central tool for solving a wide range of optimization problems [179], and
RAN in particular. The in-depth investigation of the general state-of-the-art
LP-techniques is out of the scope of this thesis, so we provide only a brief
introduction to the basic ideas. A discussion on the applicability of LP to
the RAN problems studied in the thesis is included in the follow-up chapters.
The content of this chapter is based on the book of Luenberger and Ye [182],
which we recommend for further reading.

The standard form of a linear program is

min cT x

subject to Ax = b, x > 0
(3.1)

where c and A is a vector and a matrix of coefficients, and x are the un-
knowns. A problem with a linear objective function and linear constraints

13

14 CHAPTER 3. STANDARD TOOLS

can be transformed into the standard form. The Bipartite Assignment prob-
lem and the Minimum Cost Circulation problem are special cases of a linear
program.

Consider a feasible solution x of size n, s.t. Ax = b, where A is an m×n
matrix. Let B be an m × m matrix build on any m independent columns
of A. Then, a solution where all elements of x that are not associated with
B (non-basic variables) are set to zero is a basic solution with respect to the
basis B.

The fundamental theorem of LP, due to Caratheodory [180], states that
if there is a feasible solution for LP, then there is a basic feasible solution;
and if there an optimal feasible solution, then there is a basic optimal feasible
solution. The theorem reduces a search of optimal solutions to a search of
basic optimal solutions.

The Simplex Method is the first algorithm in LP by Dantzig (1951) [72],
which finds optimal solutions though a process of pivoting. Consider a basis B.
By linear transformations and variable reordering, we can bring the equation
Ax = b to the canonical form: [

I B
]

x = b′

where I is a unity matrix. The array of coefficients A′ =
[
I B b′

]
is called

a tableau. Let xq be a non-basic variable and xp be a basic variable of the
reordered x. The goal of the pivoting process is to make xq basic and xp

non-basic. To do so, we take the pivot element apq of A′, divide p-th row of
A′ by apq to get a unit coefficient for xp in p-th equation, and then subtract
multipliers of p-th row from other rows so that coefficients for xq are zero in all
other equations. That makes xq basic, as a result of xp becoming non-basic,
yielding a new basis B′. The pivot element is selected considering a cost of
bringing a new element to the basis

rp = cp −
m∑

i=1
cpaip

where cp is an element of the cost vector c in Eq. 3.1. The exchange of basis
to be advantageous if the cost is negative. If there are no such exchange,
then the current basic feasible solution is optimal, and is equal to the optimal
feasible solution.

The geometrical interpretation of the Simplex method is illustrated in Fig-
ure 31a. Feasibility constraints define a polytope. Basic feasible solutions and
their basis correspond to the vertices of the polytope, and the pivoting pro-
cess corresponds to moving from one vertex to an adjacent one. The Simplex
method is a textbook representative of a more general basis-exchange methods
in LP. In contrast, the interior-point methods, firstly suggested by Neumann,
is another class of optimization algorithms that traverse the interior of the
feasible region until they reach the best solution.

3.1. LINEAR PROGRAMMING 15

One of the most important representatives of the interior-point methods is
the Ellipsoid method. The optimization objective is defined by a binary search.
For each objective candidate, the method checks if the candidate is feasible.
An objective value defines a feasibility polytope, and the method checks if
there is any feasible point within the polytope. If so, the objective value is
feasible, and the point corresponds to the solution. The process of finding a
feasible point is illustrated in Figure 31b. Starting with the feasible polytope
P and the ellipsoid that is guaranteed to contain P , the method checks if the
center of the ellipsoid x0 is feasible. If yes, then the goal is reached. If not,
the method finds a cutting plane (a dashed line) that goes thought x0 with
the side of the plane containing P . Based on it, the next ellipsoid with the
center in x1 is derived, which is guaranteed to have a smaller volume.

The Ellipsoid Method, developed in 1960th in the Soviet Union, was an
important step for the problems with the exponential number of constraints,
such as the maximum matching problem, which now can be solved just by a
polyhedral description of the convex hull of matchings [179]. While the simplex
algorithm is not polynomial, the Ellipsoid method is polynomially bounded,
which makes it very useful in the optimization theory for complexity analysis.
However, it is not faster than the Simplex algorithm in practice. The state-of-
the-art LP optimization algorithms combine the interior-point methods with
the duality theory and techniques of convex optimization.

Polytope

Co
ns
tra
in
t

Constraint

Feasible	region

Unfeasible	region

Basis	Exchange

(a) Simplex method

x1

x0

(b) Ellipsoid method

Figure 31: LP optimization

One of the most important convex optimization technique is based on the
use of the Lagrange multipliers, which are called the dual variables in LP.
The general idea is to substitute the objective function in Eq. 3.1 with the
Lagrange function defined by

L(x, λ) = cT x− λT (b−Ax) (3.2)

16 CHAPTER 3. STANDARD TOOLS

where λ are Lagrange multipliers. In case of a single constraint, the optimal
solution to the original problem is one of the stationary points of L, where all
first partial derivatives of L are zero. Therefore, finding an optimal solution
boils down to finding stationary points. For several constraints the method
extends with similar arguments.

Lagrangian relaxation is a relaxation method in OR, that use the Lagrange
multipliers to simplify an optimization problem. The simplified optimization
objective is the maximization of the unconstrained L(x, λ), where the viola-
tion of the constraints is penalized using the Lagrange multipliers, instead of
satisfying them strictly. λ represents the weights for the penalization.

In RAN, variables are restricted to be integers. It is a special case of LP,
which is NP-complete and generally harder then the continuous counterpart.
Most of the OR algorithms for the flow-type RAN are based on Lagrangian
relaxation [258]. Other optimization techniques such as Stochastic Gradient
Descent [39], cutting-plane methods, and various heuristics like local search
or genetic algorithms also apply.

3.2 Submodularity
Submodularity is a generalization of convexity to set functions. A function
f(S) is submodular if and only if the marginal gain from adding an element to
S is decreasing with the size of S (a property of diminishing returns). There
are 3 equivalent definitions:

• ∀A ⊆ B, f(A ∪ {s})− f(A) ≤ f(B ∪ {s})− f(B)

• ∀A, B, f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

• ∀A ⊆ B, s /∈ B, f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B)

Minimum of an unconstrained submodular objective is computable in poly-
nomial time. Minimization under constraints, as well as any submodular max-
imization is an NP-hard problem. However, the beautiful property of the
maximization problems with submodular objective is that a greedy heuristic
for such problems yield an approximation guarantee of (1 − 1/e) (∼ 63%),
or 1/2 if the problem is unconstrained, which is also the best possible guar-
antee unless P=NP [147]. This property is applied for large-scale FL prob-
lems [84, 142], stochastic spread control in diffusion networks [138], as well
as in a wide range of machine learning tasks, such as feature selection, active
learning, ranking [148]. We utilize this property to build new algorithms in
Chapter 11.

Unlike submodular maximization, the approximation guarantee does not
hold for the minimization problem, and there are no existing efficient solutions
for the minimization problem in a general case [128]. Nevertheless, the field
of minimizing unconstrained submodular functions is rapidly developing in

3.2. SUBMODULARITY 17

recent years due to its applicability in Machine Learning (ML) [77, 128], and
RAN [92]. Jegelka and Krause [128] provide a comprehensive overview of the
state-of-the-art applications of the submodular optimization in ML, including
minimization, maximization, and active learning. Gamlath et al. [92] apply
LP, the constructive version of the Caratheodory’s theorem [180], and the
submodular minimization methods to solve the Stochastic Bipartite Matching
(SBM) problem, which is a generalization of the Bipartite Matching problem
to the case when edges are unknown. A solution to SBM should provide
edges sequentially in an order desirable for matching. An edge proposed by
the solution represents a query (an offer) to a customer. The query-commit
SBM requires that the first offer accepted by a customer must appear in the
final matching. The SBM with Price-Of-Information allows several offers to
the same customers independently on the acceptance, but each offer indues a
cost. SBM with a few queries is another variation where the cost is zero, but
the number of queries is limited. Recently, Yamaguchi et al. [275] proposed a
proof technique for the performance analysis of a generic SBM, including the
mentioned ones and a generalization of the bipartite matching to hypergraphs.

One of the most scalable approximation approaches to the submodular
minimization is the Minimum Norm Point algorithm (MNP) [90, 128]. MNP
is a gradient descent algorithm that builds on the Lovász extension of the
submodular objective. The Lovász extension is a reduction from the min-
imization of a submodular set function to the constrained minimization of
a convex continuous function. The number of constraints is exponential in
number of variables, but due to the Ellipsoid method, described in the pre-
vious section, the minimum can be computed in polynomial time. Recently,
Chakrabarty et al. [48] suggested to improve the gradient descent by provid-
ing a fast calls to an objective oracle, that leads to a subquadratic runtime of
the MNP algorithm. Their solution is based on an additional data structure,
an enhanced binary search tree, that allows to query the decision variables
while updating them. This improvement is of a high importance, because the
Ellipsoid method used in achieving the prior theoretical results is numerically
unstable and have a poor practical performance.

A special case of submodular minimization is the Graph Cut problem [77,
128]. A scalable approach to the minimization problem, widely used in the
computer vision field, is based on the idea of approximating the objective
by the second-order graph cut objective. The cut problem might be linearly
solvable in most cases. The recent paper of Djolonga et al. [77] shows the
high interest of the AI community in the topic. Authors study the behaviour
of the MNP algorithm in application to Deep Neural Networks. Jegelka et
al. built on the idea of utilizing the graph cuts and suggested a generalized
submodular graph cut problem to approximate a broader class submodular
functions, including the constrained submodular minimization [48, 129]. Other
more recent works on special cases of submodular minimization include [125,
191]. Results of Jegelka et al. were later applied by Staib and Jegelka to the

18 CHAPTER 3. STANDARD TOOLS

Budget Allocation problem [239], a special case of RAN that mixes flow-type
and diffusion-type interactions. We cover it in more details in Chapter 7.

3.3 Dynamic Programming

Dynamic Programming (DP) is a method for optimal control developed by
Richard Bellman in 1950s. The core idea is to divide-and-conquer, i.e., split
a larger problem into smaller sub-problems, and solve them recursively. The
recursive connection between the problem and its sub-problems is defined
through a Bellman equation. Consider a dynamic decision problem with in-
finite time horizon as an example. Let xt be a state of a system at the time
moment t. Let at be a decision on some control variable that leads to a change
of the state. Let V (xt) be a value function that shows a future profitability
of the state, and R(at, xt) be a pay-off from making the decision. Then, the
problem is to maximize V (x0), and the corresponding Bellman equation that
recursively defines the function is

V (xt) = max
at
{R(at, xt) + γV (xt+1)} (3.3)

where xt+1 is the new state of the system, and γ is a discount factor, a param-
eter that is used for convergence results of certain algorithms, and represents
the probability that the infinite dynamic process will terminate.

In Chapter 6 we provide Bellman Equations for toy examples of RAN, the
Facility Location and the Influence Maximization problems, that illustrate the
connection between RAN of the flow-type and the diffusion-type interactions.
Larger and more complex problem instances are barely handled by the classic
DP approach, due to its poor scalability. Additionally, DP requires a perfect
and complete model, which often is intractable for complex stochastic environ-
ments with a temporal component due to so called “curse of dimensionality”.

More advanced methods such as Approximate DP [210], Adaptive DP [99],
and Neuro-Dynamic Programming [30] are suitable for RAN, and improve
the scalability of the DP approach by function approximations, but still are
limited to hundreds of decision variables, which does not suffice for the real-
world problems considered in this thesis. We leave the detailed review of these
methods out of the scope of the thesis.

3.4 Monte-Carlo

A Monte-Carlo (MC) method is a generic term for all optimization meth-
ods that use a suitable amount of randomly generated observations to obtain
a numerical estimation of a solution [270]. Likewise, an MC simulation is a
generic term for methods that estimate an objective by sufficient random sam-
pling. It is a common approach in problems with significant uncertainty and

3.4. MONTE-CARLO 19

high degrees of freedom, widely applied in the fields of engineering, biology,
economics, and computer science.

In this thesis we use MC in Chapters 9, 10 and 11. Algorithms that use
MC in connection to the diffusion control (Chapters 10, 11) are also referred
as Sketching algorithms [165]. As a general idea, they sample network scenar-
ios to collect experience, and then allocate resources at nodes that appeared
as the most influential, or, in reverse, nodes that fall under influence more
often. In Reinforcement Learning (Chapter 9), MC is used together with DP
in what is called the Time-Difference (TD) method. Unlike MC, TD methods
partially utilize experience from other learned estimates. For other applica-
tions of the MC method and MC simulations, refer to the book Rubinstein
and Kroese [223].

Chapter 4

Facility Location

The general formulation of the Facility Location problem (FL) is to allocate
a set of facilities (resources) so that to maximize the satisfaction of a demand
(customers), or minimize their inconvenience [84]. A distinctive characteristic
of FL among other resource allocation problems is the flow-type consumer-
resource interaction and the spatial nature of the problem. Customers and
facilities are presented as objects in a continuous 2-dimensional space, or at-
tributed to road network elements. Therefore, various techniques like ad-
vanced routing algorithms, clustering, spatial indexing, and pruning based on
spatial location apply [188].

In this chapter, we propose a classification of Facility Location problems
based on the type of facilities and whether customers are points or trajecto-
ries. We also discuss the Routing problem (Section 4.5), in the context of its
application to FL. A separate branch of research is dedicated to the effect
of dynamic prices on the allocation of facilities in case of the probabilistic
demand-supply. We cover the routing and pricing problems in more detail
due to the increasing interest in the topics from the DS community, and the
connection to our overview of submodularity applications (Section 3.2) and
online recommendations (Chapter 5). In Chapter 8 of the second part of the
thesis, we study the static deterministic version of FL, where both customers
and facilities are nodes of a road network.

4.1 Classification of Facility Location Problems

Table 41 summarizes the classification of FL, grouped by the type of customers
and facilities. For a summary of methods applied to the discrete FL problems,
refer to [84, 258]. The most studied variation of the Facility Location problem
is the one where both customers and facilities are represented as static points.
If points are nodes in a road network, then the problem becomes a set cover
problem. Facilities can be capacitated, meaning that each facility can serve
a limited amount of customers. Hub points are a special case of static point

21

22 CHAPTER 4. FACILITY LOCATION

facilities, usually representing public transportation stations. A hub is a node
such that it must be visited by a customer to get to the destination. Compet-
itive Facilities are points or trajectories, which belong to a different “players
on the market”. This means there is more than one objective function, each
corresponds to one “player”. Facilities are placed in iterations, maximizing the
corresponding function. Obnoxious facilities are points or trajectories which
negatively influence customers, so that the objective function usually maxi-
mizes a dispersion of facilities. Temporal facilities and customers are those
who have defined time-dependent working hours or demand accordingly. We
cover the case of customers as trajectories in Section 4.5.

Customers Points Stochastic
Points

Temporal
Points

s-d Tra-
jectories

Stochastic
Trajec-
tories

Given
Trajec-
tories

Facilities
Uncapacitated Points [26, 27,

57, 60]
[85, 237] [203] [91, 188]

Capacitated Points [11] [296]
Hub Points [218] [164]
Competitive Facilities [1, 87] [273]
Obnoxious Facilities [28] [40] [8]
Temporal Facilities [130,

184]
[183]

Built Trajectories [121,
134]

[154,
220, 280]

Given Trajectories [54, 276]

Table 41: FL Summary

Most of FL problems can be formulated as an LP program. Hence, various
LP techniques apply, like Mixed Integer programming [130, 188], Binary Inte-
ger programming [188, 193], Lagrangian relaxation. The majority of approx-
imation algorithms use a rounding technique for the generalized assignment
problem [235] as a basis.

4.2 Classic Facility Location

In this thesis we focus on a canonical case of FL, namely the vertex k-median
problem, where we minimize the distance between nodes and the closest facil-
ity by selecting k nodes for new facilities. The LP program for the k-center
problem is shown in Eq. 4.1. Variable xi is an indicator that ai is selected
for a new facility. Variable yij is another Boolean that captures whether node
ai is assigned to facility aj . A set of constraints in Eq. 4.2 assures that ai

can be assigned only if aj has a facility and the total amount of new facilities
is k. Due to Eq. 4.2 and the monotonically increasing d(i, j), the optimal
assignment will always correspond to the assignment to the closest facility.

4.3. SCALABLE FACILITY LOCATION 23

min
yij

∑
i

∑
j

dijyij , xj , yij ∈ {0, 1} (4.1)

yij ≤ xj ,
∑

j

xj = k,
∑

j

yij = 1 (4.2)

Although LP and convex optimization provides an accurate solutions with
a great flexibility in constraints and objective, such accurate methods aim
datasets of thousands of nodes and hundreds of variables. Approximation
methods based on LP increase these numbers on an order of magnitude [40].
At the same time, road maps of large cities as Copenhagen or Moscow have
over billion nodes and edges, and some social networks from Standford Large
Network Dataset Collection [156] have over 107 edges. For such real-world
datasets LP can not provide a solution in a reasonable time, so the challenge
is to provide faster algorithms keeping the objective as close to the optimal
as possible. In Chapter 8 we present a novel heuristic-based Wide Match-
ing Algorithm (WMA) that solves the capacitated k-center problem for large
datasets, the variation of the problem where each facility can serve only several
customers up to some capacity value. WMA uses a repeated matching as the
main action of the algorithm. While the first idea solving discrete FL problem
by repeated matching was introduced in 1999 by Rönnqvist et al [224, 258],
they use LP to evaluate the “score” of the current matching, and, if infeasi-
ble, they use a randomized heuristic to “split” some facilities and redistribute
customers. We provide a more scalable solution, utilizing a greedy set cover
routine instead of LP when evaluating matching feasibility, as well as consider
a more general problem formulation.

4.3 Scalable Facility Location

Scalable solutions for FL appear in the literature as Optimal Location Queries.
In this problem a facility can locate at any point on an edge. Yao et al.
[280] suggested a divide-and-conquer algorithm that partitions the network
into subgraphs, using a clustering algorithm. Chen et al. [57] proposed a
solution which takes advantage of a precalculated neighborhood, the Nearest
Location Component (NLC). NLC contains all points that are closer to that
customer than the nearest already placed facility. The solution ranks such
intervals by the number of customers that have this interval in their NLC.
Other computational optimization techniques are spatial indexing techniques
(kd-trees and R-trees [136]), and space division. We use the space division
techniques in Chapters 8 and 9 of our thesis, and give more examples in
Section 4.6.

24 CHAPTER 4. FACILITY LOCATION

4.4 Stochastic Facility Location
Stochastic Facility Location is a class of FL problems where customers, re-
sources or network elements are probabilistic. One example of such model is
the k-median problem with stochastic edge length and demands described by
discrete scenarios. The problem can be solved by Lagrangian Relaxation [236],
treating the stochastic FL as a deterministic FL of a larger scale. Complex-
ity of the problem in this case grows linearly with the number of scenarios.
Richer models may include probabilistic production costs, selling prices, prob-
abilistic disruption of facilities, emergency needs of customers, and dynamic
reallocation with extra cost. For a complete survey, refer to Snyder et al [236].

4.5 Route Planning
Route Planning is an important component in FL algorithms. A basic rout-
ing in a deterministic network implies finding shortest paths and is usually
implemented by the Dijkstra’s algorithm [76], also used in Chapter 8 of this
thesis. Let H be a min-priority queue, and the goal is to find a shortest path
length between v and w. The algorithm starts by initiating H with a single
node v. Then, iteratively, the algorithm pulls a node u from H, and updates
distances to all neighbours of u to

dist(n) = min{dist(n), dist(u) + weight(u, n)}

where n is a neighbour node, dist(n) is a current known distance from v to n,
and weight(u, n) is a weight (cost) of an edge between u and n. Distances are
initiated with an infinitely large number, and the algorithm terminates when
w is pulled from H. At termination, dist(w) stores the shortest path length.
In order to find the shortest path, the algorithm saves path predecessors in
an additional array each time the distance is updated. The path is obtained
by tracing back once the algorithm reaches w. If applied on road networks,
a simple efficiency improvement can be achieved by maintaining two heaps
instead of one, and running two instances of the algorithm from v and w
simultaneously. The stopping criterion in this case is when the sum of the top
values of two queues is larger or equal to the length of the best path seen so far.
For the details of the Bidirectional Dijkstra’s algorithm and other basic Point-
to-Point Shortest Path algorithms, refer to Goldberg et al [102]. Notably,
Bidirectional Dijkstra’s algorithm is a special case of a general bidirectional
search heuristic, that is faster than an unidirectional counterpart only for
specific domains [22].

Scalable routing algorithms use the domain-specific knowledge. For exam-
ple, road networks are planar networks, with uniform degree distribution, and
uniform branching factor, that makes the bidirectional search heuristic effec-
tive. Other than that, the networks have a highly hierarchical structure. This

4.5. ROUTE PLANNING 25

fact is used in the Transit Node Routing approach. The idea is to precompute
distances between small set of transit nodes interconnected by a sparse net-
work relevant for long-distance travel. Caching and spatial indexes are also
widely used in route planning.

Among the vast amount of computational optimization methods for find-
ing the shortest paths [201], a ground-breaking data-intensive technique was
proposed by Geisberger et al [95], called Contraction Hierarchies. It also ex-
ploits the hierarchical structure of road networks by building a set of shortcuts.
The algorithm has a preprocessing phase, and a query phase. At the prepro-
cessing phase, nodes are iteratively removed from a network, and if a removed
node is a part of the shortest path between its neighbours, a new virtual edge
(a shortcut) is added. At the query phase the shortest path is computed by
the Bidirectional Dijkstra’s algorithm, but due to the shortcuts, the algorithm
can skip unimportant vertices, i.e. such vertices that do not lie on the shortest
path. During the tracing back phase of the Dijkstra’s algorithm, the short-
cuts are unpacked to obtain the shortest path. Finding an optimal sequence
of nodes in the preprocessing phase in an NP-hard problem, so various heuris-
tics apply. Overall, the technique allows to query the shortest path in a road
network with over 107 nodes within a fraction of second [95]. Contraction
Hierarchies are used in modern car-navigation systems, route planners, traffic
simulators [96].

Best routes in real-world applications do not always follow the shortest
paths. Traffic conditions, speed limit, and even amount of right turns along a
route can influence preferences of drivers and arriving time. In OR this case
is covered by assigning a certain probability distribution to edges. Then, for
example, for each path the expected arrival time is equal to the convolution of
distributions of all edges along the path. However, such approach leads to a
large accumulative error, has limited scalability due to the costly convolution
operator, and does not account for such factors as turns and personal prefer-
ences. Furthermore, trajectory datasets might be too sparse to collect enough
information about each edge. An innovative approach was proposed by Yang
et al. [71]. They proposed to use trajectories directly instead of calculating
cost distribution per-edge, so to preserve implicit dependencies between edges.
Then, a path cost is “collected” by finding the largest available segments in
the trajectory data. Numerous works follow this trajectory-oriented paradigm,
including works on specialized indexing techniques [268] and stochastic Con-
traction Hierarchies [207].

In relation to FL, trajectory-oriented approach appears when trajecto-
ries represent customers, and some works are mentioned in Table 41. s-d
trajectories are the type of customers that allow detours, and hence are rep-
resented only by source and destination. Stochastic trajectories imply some
assumptions on the probabilistic distribution of customers and their trajecto-
ries. Given trajectories corresponds to the case described above – an algorithm
processes (indexed) set of historical trajectories. Funke et al. [91] is an im-

26 CHAPTER 4. FACILITY LOCATION

portant representative of the last category. Authors formulate the Hitting Set
problem – to find a minimal set of nodes that covers all customer trajectories.
Customers are assumed to travel along shortest paths. It is a generalization of
the k-path cover problem, when the paths should not be obligatory shortest,
and which, in its turn, is a generalization of a set cover problem. The solution
is based on Contraction Hierarchies.

In Chapter 8 we present the WMA algorithm for capacitated FL, with
customers represented as nodes. It is based on successive solutions of the
bipartite matching problem. Throughout the algorithm, we maintain two
instances of the Dijkstra’s algorithm, for solving the shortest path problem
in a bipartite graph (following the approach of the SSPA algorithm), and
the shortest path in a road network. WMA iteratively builds the bipartite
network, until there exist a set cover of a specific size for all the customers. We
describe the details in Chapter 8, but we note the connection of our approach
to the routing planning algorithms, covered in this section. Firstly, more
efficient shortest path solutions can be embedded in our algorithm for better
performance. Secondly, WMA can be adapted to customers represented by
trajectories, by redefining the shortest distance to a customer as the shortest
distance to any point of his trajectory. Similar idea of finding a set cover
over customers-trajectories was used by Funke et al. [91] in the Hitting Set
problem. We leave the extension of WMA to the trajectory-based demand for
future work.

4.6 Dynamic Pricing

Dynamic Pricing in RAN can significantly influence allocation decisions. In
case of flexible prices, models involve price-sensitive functions of supply and
demand, so maximization of a particular objective, like revenue, throughput or
social welfare, also implicates finding an equilibrium price. The term dynamic
additionally suggests time dependency of the functions. Dynamic Pricing is
most useful when the product (resource) has an expiration date and its capac-
ity is fixed [187]. Although we do not study pricing in the following chapters,
we describe few works on the topic in this section as an introduction to taxi
management systems (Chapter 9), competitiveness and fairness (Chapter 11).

Pricing strategies have been excessively studied in OR [61, 208], and FL
in particular [84, 236]. Overviews of Dynamic Pricing models in OR are pre-
sented by Bitran et al. [32] and Elmaghraby et al. [83]. Two outstanding case
studies of Dynamic Pricing application are the airline seat pricing [187], and
the Surge Pricing model of a ride-hailing company Uber. The pricing strat-
egy of airlines is one of the most complex in economics theory. Development
of the Dynamic Pricing model is often credited to American Airlines Robert
Crandall, as a response to the success of a competitor in early 1980s. In 1994,
the company was estimated to produce extra $500 million revenue per year

4.6. DYNAMIC PRICING 27

based on its Dynamic Pricing management techniques [187]. More recently,
Uber has proved another remarkable success of Dynamic Pricing [108]. In
2012, Uber’s Boston team noticed that on Friday and Saturday drivers tend
to go home early, leaving partygoers alone and unhappy. As a solution, Uber
suggested a higher price during that time period, and two-thirds of the unful-
filled requests were eliminated. The story has attracted attention of the DS
community [252], and together with the rising popularity of ride-hailing sys-
tems, an actively developing research branch emerged [53]. Other industries
where the Dynamic Pricing approach has found its way are hotels, car rentals,
subscription systems and advertisement [61].

A representative work on data-intensive dynamic pricing in ride-hailing
systems was published by Tong et al [252]. Given a spatial region (a city)
partitioned into grid cells, and a set of workers (drivers) to complete a set of
tasks (customers), the goal is to maximize the expected revenue from complet-
ing tasks. Time horizon is divided into discrete time steps, and for each time
step the problem is solved independently (no prediction). A driver can serve
a customer within certain radius. A customer is willing to accept a driver
with a probability that depends on the price. If accepted, the driver relocates
to the destination according to the customer request. The Global Dynamic
Pricing problem is to determine prices per each cell, and dispatch drivers, i.e.
assign drivers to customers.

The proposed solution to the Global Dynamic Pricing problem is referred
as Matching-based Prising Strategy (MAPS). It is based on ideas from theory
of auctions [16] and submodularity of a proxy objective. Authors note that
for a single sell the optimal price is located on the intersection of expected
demand and supply curves, the demand curve is known to be convex, and
the supply curve is a straight line. Figure 41 illustrates the concept. As a
cell receives larger expected supply, the supply line raises towards the revenue
axis. Formally, if l is a cell id, nl is an expected number of drivers assigned
to customers in the cell, pl is a price, and Sl(pl) is an acceptance ratio of
customers, then a revenue of the cell is equal to

Ll = min{pl · Sl(pl), nl · pl}

In the formula, we assume that all customers travel the same distance for
simplicity. Each price value corresponds to a particular optimal expected car
distribution across cells nl. Therefore, for each car distribution there is a price
value it corresponds to. The task of the algorithm becomes to find an optimal
nl for each l, under the constraint of current car locations.

The extension of their solution to the Facility Location is trivial. Let cars
be facilities with capacity of one, and without current location. The goal is
to find optimal locations for cars. One can simply increase nl in a greedy
manner, selecting l where Ll benefits the most. In MAPS driver assignments
are constrained by distances, so the optimality of the greedy approach is not

28 CHAPTER 4. FACILITY LOCATION

Revenue

Price

Optimal Supply

Convex Demand Curve

Excessive
Supply

Insufficient
Supply

Figure 41: Optimal pricing under uncertain demand

trivial. Tong et al. prove that the objective of maximizing
∑

l Ll under spatial
constraints is submodular, so indeed greedy approximation apply. Defining
nl for each l is the preliminary driver assignment. On top of that, MAPS
considers the demand curve unknown, and explores iteratively with time, using
the Upper Bound Algorithm (UCB), inspired from Babaioff et al [16]. We
cover UCB in details in Section 5. Once the price is set, customers make a
decision whether to accept the price. This results in a deterministic bipartite
graph of possible matchings between drivers and customers. As the final stage
of MAPS, drivers are dispatched by solving the bipartite matching problem.

MAPS represents a common approach to simulate a taxi fleet [49, 53, 133,
167, 252, 295]. Cars are relocating in a grid in discrete time steps, serving
customers. Cars within same cell are indistinguishable, and customers are
attached to cells rather than specific locations. Cars make a joint decision,
implying that the overall system architecture is centralized. We use similar
approach in Chapter 9. In our work, we consider a problem of cruising, i.e.
relocating idle drivers who don’t get an order. The Global Dynamic Pricing
problem is a special case of the dispatching problem, which is complimentary to
the cruising problem. Unlike MAPS, we predict distributions of customers and
relocation of drivers, that eliminates such effects as wild goose chasing [47],
i.e. picking up distant customers and wasting drivers time and earnings.

MAPS is based on Myerson auction mechanism [16]. The mechanism is
known to violate fairness among participants [255], unlike, e.g., the oldest but
not widely used Vickery mechanism [13]. Recently, Zheng et al. addressed
this issue by proposing social-welfare oriented auction mechanism in the same
context of order dispatching [294]. In our work, we also address the fairness is-
sue, but from driver’s perspective, orienting our solution to the poorest driver.
We talk about the fairness and the worst case oriented solutions in Chapter

4.6. DYNAMIC PRICING 29

11 in details. For an overview of various market models refer to Reynolds et
al [214].

Other important works on Dynamic Pricing in the taxi management con-
text include Balseiro et al [18], where authors consider a model of sequential
querying of customers, and several works [14, 53] where solutions follow the
Markov Decision Process framework, discussed in the next chapter.

Chapter 5

Decisions Over Time Under
Uncertainty

Sometimes resource allocation decisions should be provided or updated on-
the-fly, responding to a live stream of resource availability information and
timely prediction of user preferences. For example, a ride-hailing company
should maintain a distribution of cars in a road network in a way that matches
stochastic demand patterns. Failing to do so would lead to a drop in the rev-
enue of the company, unequal workload among drivers, and unsatisfied cus-
tomers. A model for such problems involves both a temporal component (e.g.,
dynamics of cars, time dependency of the demand), and a stochastic compo-
nent (e.g., orders appear in random). Models with the temporal component
are also referred as dynamic, or a control process.

A common approach is to model a stochastic control process is Markov
Decision Process (MDP). One or several actors perform one of possible ac-
tions. An environment produce a reward for the performed action, and defines
(deterministically or with uncertainty) its next state. The objective is to max-
imize a sum of rewards over an episode, a sequence of discrete time periods.
Actors follow a policy, which is a deterministic or probabilistic function that
maps a state to action. An action depends only on the current state, which is a
core property of MDP. Three fundamental classes of methods for solving finite
Markov decision problems are Dynamic Programming, Monte-Carlo methods,
and Temporal-Difference (TD) learning. TD learning is a core method in the
field of Reinforcement Learning (RL), which is the focus of this chapter.

5.1 The Multi-Armed Bandit

The Multi-Armed Bandit (MAB) problem aims to allocate limited resources
when parameters of a model are only partially known to an algorithm. The
name comes from gambling at slot machines, known as one-armed bandits. It
is a classic problem where a solution should involve an exploration-exploitation

31

32 CHAPTER 5. DECISIONS OVER TIME UNDER UNCERTAINTY

balance, a decision on when to explore new solutions, and when to follow an
existing strategy. The problem is often used as an introductory problem to
RL since it illustrates the concept of evaluative feedback of training data. The
feedback provides an instant value for any choice, in contrast to instructive
feedback on whether a certain choice is a correct choice.

Following the MDP framework, the classic MAB assumes that a reward
follows a stationary unknown probability distribution, p(r|a), where a is the
taken action and r is a reward for that action. At each time step, an agent
selects an action according to the current knowledge of the distribution (a
policy), and after receiving feedback from the environment (a reward), the
agent can adjust the knowledge according to the new experience.

Let A be a set of possible actions, and πt(a) be the policy – a probabilistic
distribution over possible actions at time moment t. Let Q(a) be a value
function that estimates an expected reward from an action a. Given the
rewards up to the time moment t, we can estimate a future reward as an
average over experienced rewards:

Qt(a) =
∑t

i=1 ri[ai = a]∑t
i=1[ai = a]

where [ai = a] is an indicator that is equal to 1 if an action at time mo-
ment i was the same as the evaluated action a, otherwise 0. Then, Q(a) =
limt→inf Qt(a). Let At be a set of actions that are the best according to the
experience, for example actions with the largest average revenue so far:

At = arg max
a∈A

Qt(a)

Then, a greedy policy for the Multi-Armed Bandit problem is

πt(a) = [a ∈ At]
|At|

The drawback of the greedy solution is that there might not be enough
statistics for some actions. Therefore, an algorithm should take into consider-
ation the exploration-exploitation compromise. Instead of always selecting the
greedy action, it can randomly select one of the available actions. A simple
implementation is the ϵ-greedy strategy:

πt(a) = (1− ϵ) [a ∈ At]
|At|

+ ϵ

|A|

where ϵ is a parameter that shows how often an algorithm prefers the greedy
strategy over the random policy. A common practice is to decrease exploration
ϵ with time.

5.2. REINFORCEMENT LEARNING 33

The Upper Confidence Bound (UCB) algorithm is a standard approach to
the MAB problem, that follows the exploration-exploitation idea, but addi-
tionally estimates the confidence in the exploiting selection. Instead of using
the ϵ parameter, the approach suggests to define At as

At = arg max
a∈At

(
Qt(a) + δ

√
2 ln t

kt(a)

)

where kt(a) =
∑t

i=1[a = ai], and δ is another parameter for exploration-
exploitation trade-off. The value that is maximized is called the upper confi-
dence bound, and is larger for actions that either have large Qt(a) value, or
have a low number of occurrences kt(a).

Two examples of RAN where UCB is applied are the Global Dynamic
Pricing problem, covered in Section 4.6, and the Online Bipartite Matching
(OBM) problem. OBM is a generalization of the Bipartite Matching problem
to a discrete-time domain when nodes arrive as time passes, with the arrival
time unknown in advance. Once a node arrives, an OBM algorithm should
provide immediate and irrevocable decision on the matching of the node. An
example of OBM is a problem of dispatching drivers in a Ride-Hailing plat-
forms [192, 265]. As soon as a customer appears, an algorithm should match
him with one or several drivers. OBM can be solved by LP [192], online convex
optimization methods [111], the UCB algorithm [39], and the Reinforcement
Learning approach [265], which we cover in the next section.

5.2 Reinforcement Learning
Reinforcement Learning (RL) is one of the most active research areas in
DS, having over 6000 publications just in January 2020, according to Google
Scholar. It is a distinct Machine Learning paradigm, alongside with Super-
vised and Unsupervised learning, which follows the idea of goal-oriented learn-
ing from interaction [244]. Unlike the MAP problem, a general formulation of
an RL problem allows an agent to influence the environment. RL techniques
are useful when the problem is data-intensive, and the environment and transi-
tion dynamics are too complex to be described as a detailed stochastic model.
This is a major difference with OR and Stochastic Control methods, such as
Dynamic Programming. Modern RL is tightly coupled with Artificial Intel-
ligence, since it is a common practice is to parametrize a policy with Neural
Network (NN), and train NN using a simulator of the environment. For a
historical overview and an all-inclusive survey of existing RL methods, refer
to the book of Sutton and Barton [244].

RL usually implies estimating a value function, which evaluates the future
profitability of a state. Therefore, a trained model implies planning a course of
action, and predicting the future outcomes before they are experienced. This
is a core difference between RL and evolutionary methods, such as genetic

34 CHAPTER 5. DECISIONS OVER TIME UNDER UNCERTAINTY

algorithms and Simulated Annealing, used in OR as heuristics. Evolutionary
methods can be applied to RL problems, and are effective if a search space for
an optimal policy is small, or when an agent cannot accurately sense its state.
Such methods do not use value functions and usually are out of the scope of
RL literature [244].

Two basic RL methods are Q-learning and Actor-Critic. Most of the ex-
isting algorithms are an advanced version of either. A simple Q-learning al-
gorithm is an off-policy Temporal-Difference learning algorithm that trains
an action-value (Q) function. Let rt be a reward at time step t, α and γ –
learning parameters. The Bellman equation for Q-learning is [244]

Q(st, at) = Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)]

Q(st, at) is the action-value function because it shows profitability (return) of
the state st and the action at. Q-learning is the Temporal-Difference algorithm
because it updates the function after each time step and it is Model-Free,
hence does not need to know a complete set of states and actions. Temporal-
Difference methods are a fusion of Dynamic Programming and Monte-Carlo
methods. Finally, Q-learning is off-policy, because at the learning phase it
assumes actions are selected greedily according to the current Q-function,
while in fact actions might be selected by a non-greedy policy. Q-learning
where a policy is parametrized by Neural Network is referred as Deep Q-
Network (DQN).

Actor-Critic methods imply a probabilistic policy. Unlike Q-learning, the
action space is continuous. The policy is parametrized, and parameters are
learned using gradient descent. The name comes from a collaboration of an
Actor, a function that updates parameters of policy, and a Critic, a function
that suggests an actor a direction of an update. Both Actor and Critic are usu-
ally parametrized by Neural Network. In Chapter 9 we consider an extension
of the Actor-Critic method, namely cA2C, that uses a concept a context, a
spatial-based collaboration method that restricts an effect of redundant swap-
ping of locations among agents.

In this work, we are particularly interested in Multi-Agent RL (MARL),
and its application to the Taxi Management problem. cA2C is one example
of a scalable MARL solution. A comprehensive survey is proposed by Nguyen
et al [196]. MARL can have cooperative or non-cooperative setting [167]. The
collaborative setting is when agents explicitly learn to cooperate or compete.
Such methods are unscalable, supporting up to a dozen of agents [293], because
of the credit assignment problem, a common issue in RL when rewards from an
environment are too sparse or too far in time for a model to associate with a
cause. The non-cooperative setting is when the interaction of the agents are a
part of a model. Most of the approaches are an extension of DQN, and only a
few are extensions of Actor-Critic methods [196]. cA2C is a non-collaborative
large-scale method designed specifically for taxi fleet management.

5.2. REINFORCEMENT LEARNING 35

One of the latest innovations in MARL is the Proximal Policy Optimization
(PPO) algorithm with the Intrinsic Curiosity Module [204]. PPO is a state-of-
the-art single-agent policy optimization algorithm that extends Actor-Critic
by additional regularization of policy parameters. The curiosity is a measure
of surprise the encountered state brings to the agent. The architecture con-
sists of two models, one predicts the next state of an environment, another
that predicts an action that should correspond to a transition between the
current state and the next state. The intrinsic reward is calculated as a dis-
tance between the actual next state and predicted next state. As a result,
the states that are most unpredictable are valued the most. The algorithm
shows extraordinary results in environments extremely sparse rewards, such
as walking in mazes [259], and Multi-Agent games with cooperation [204]. For
the recent overview on cooperative game-like MARL, refer to Zhao et al. [293],
and a blog of OpenAI1, a major AI research laboratory, authors of PPO, Gym2

(a toolkit and a collection of standard baselines for RL), OpenAI Five3 (an
expert-level AI for one of the most complex multi-player game DOTA2 [217]),
and GPT-24 (a Natural Language Processing model, trained on 8 million web
pages, and capable of writing human-level quality fake news).

In this thesis, we study a new objective that maximizes the minimum
revenue of drivers and adapts several RL solutions to the fair objective in a
multi-agent setting. Training for the fair objective, in general, is more difficult
than the total reward objective, since rewards are defined by the poorest driver
only, so they are even sparser. We address the problem heuristically. Chapter
9 discusses the results. We use PPO as one of the baselines, and leave the
embedding of the curiosity in our fair taxi management algorithms for future
work.

1https://openai.com/
2https://gym.openai.com/
3https://openai.com/projects/five/
4https://openai.com/blog/better-language-models/

https://openai.com/
https://gym.openai.com/
https://openai.com/projects/five/
https://openai.com/blog/better-language-models/

Chapter 6

Diffusion in Networks

Resource allocation in social networks or computer networks requires a special
approach due to the crucial differences in network topologies, the behaviour of
participating agents, their interaction, and, consequently, probabilistic mod-
els. Unlike FL, where the objective is defined by a cost of flow or transporta-
tion along a specific path, such phenomena as a disease spread require to take
into consideration all possible paths, since an infected node might influence
any number of adjacent nodes, so the flow preservation does not hold. In our
study we model diffusion as independent cascades, and consider problems of
Influence Maximization, Node Immunization, and Robustness of Cascade Dif-
fusion under Node Attacks, with an emphasis on information spread control
in social networks.

6.1 Influence Maximization

The diffusion model we focus on in this thesis is the Independent Cascade
(IC) model, which is a descendant of compartmental models, i.e. mathemat-
ical models of infectious diseases. It assumes that each edge is labeled by a
probability of influence through the edge, and applied mostly in a context of
information diffusion in social networks. We provide the precise definition of
IC in Chapter 10 of this thesis. The model became especially famous after the
seminal work of Kempe et al. [138], where they propose to model information
diffusion in social networks as IC, and formulate the Influence Maximization
problem (IM), which we consider a special case of RAN. The objective of the
IM model is to select seeds – nodes that initiate the propagation. The problem
is NP-hard. The key observation of the authors is that the objective of IM
is submodular, so the problem can be solved greedily, in-scale and with an
approximation guarantee.

The IM problem proved to be effective in viral marketing and became pop-
ular in the DS community due to the countless possible IM extensions where
the submodularity property preserves. We list some of them. IM may include

37

38 CHAPTER 6. DIFFUSION IN NETWORKS

user preferences [131], topic-awareness [21], dynamic seeding [251], negative
(competitive) opinion spread [44, 277]. User preferences are represented as
additional edges in a network with weight function induced by collaborative
filtering. Topic-aware diffusion model, similarly to the model with user pref-
erences, is based on calculating a vector product of a propagated item and an
edge label. Dynamic seeding [251] model implies that new seeds are added
iteratively. Consider Li et al. [165] for a complete survey.

6.2 Diffusion and the Facility Location problem

In order to illustrate a connection of the IM problem with the Facility Location
problem, we consider a toy example of RAN in a linear graph, and describe a
polynomial time solution using Dynamic Programming. For the FL problem,
let dij denote a matrix of geodesic distances. For the IM problem, let 0 <
pi,j ≤ 1 be a probability that the edge (ai, aj) survives, and a matrix dij

contain probabilities of paths existence between each pair of nodes:

dij =
∏

k=i+1..j

pk−1,k

Eqs. 6.1 and 6.2 show the Bellman equations for the FL and IM problems.
Here, fFL(m, k) says that the cost of the assignment of the k-th facility (state
variable) to node m (control variable) is equal to the minimum cost of the
assignment of the (k − 1) facility to node j, plus the cost of adding a new
facility to the m-th node (payoff function). The minimization occurs over
control variable j. The cost of the new facility is equal to the sum of distances
to the closest facility over all nodes in the range (j . . . m). Next, fIM(m, k)
has similar meaning, with the payoff function shown in Eq. 6.3.

fFL(m, k) = min
1≤j<m

{
fFL(j, k − 1) +

m−1∑
i=j+1

min{dji, dim}
}

(6.1)

fIM(m, k) = max
1≤j<m

{fIM(j, k − 1) + S(j, m)} (6.2)

S(j, m) =
m∑

x=j

(djx + dxm − djxdxm) (6.3)

The base case in for both problems appears when m = k. Then, each of
the m nodes contains a resource, and the value of the functions is just the sum
of distances

∑
1≤i<m di(i+1). The optimal the objective for locating k facilities

in n nodes can be found by the recursive calls

fFL(k) = min
m∈[k...n]

fFL(m, k)

6.3. SCALABLE SPREAD CONTROL 39

fIM(k) = max
m∈[k...n]

fIM(m, k)

Under the assumption of small influence probabilities [279], we can also
linearize the IM objective and provide an LP formulation for the toy RAN
under the diffusion-type interaction, similarly to the LP formulation for the
facility location problem (Eq. 4.1). The probability of a node i being active
in a linear graph is equal to

S(i) = 1− (1− dli)(1− dir), (6.4)

where l and r are indexes of the left and right closest seeds, respectively. The
expected number of active nodes is the sum of S(i) over all nodes. We can
express dli as

∑n
j=1 dji · yji with the constraint that

∑n
j=i+1 yji = 0, meaning

that we assign only to seeds with a smaller index. One new variable zij ∈ {0, 1}
is used for assignment to a seed with a larger index in a similar manner. We
can linearize the objective by taking into consideration that probabilities of
information propagation in real-world graphs are small [279]. The resulting LP
objective is presented in Eq. 6.5 with the corresponding constraints occurring
in Eqs. 6.6,6.7,6.8.

max
yij ,zij

∑
i

∑
j

dijyij +
∑

i

∑
j

dijzij (6.5)

yij ≤ xj , zij ≤ xj ,
∑

j

xj = k (6.6)

∀k
k−1∑
i=0

yik ≤ 1,
n∑

i=k+1
zik ≤ 1 (6.7)

∀k
n∑

i=k+1
yik = 0,

k−1∑
i=0

zik = 0 (6.8)

LP can also provide solutions to the IM problem for arbitrary graph topolo-
gies [238, 238]. However, such solutions have limited scalability. For example,
Sing and Dinh [238] presents a mixed LP and randomized algorithm that can
process a network up to 1.5K nodes and 2.7K edges within a time limit of 1h.

6.3 Scalable Spread Control
Data-Intensive solutions to IM can be categorized into Monte-Carlo-based,
Proxy-based and Sketch-based approaches [165]. Proxy-based approaches
propose practically effective proxy models to approximate the IM objective.
Sketch-based approaches use simulations similarly to the Monte-Carlo meth-
ods, but collect a targeted experience with an emphasis on theoretical effi-
ciency. Sketch-based approaches are known to be both efficient (unlike Monte-
Carlo methods) and provide the approximation guarantees (unlike Proxy-
based solutions). Most scalable Sketch-based approaches are based on the

40 CHAPTER 6. DIFFUSION IN NETWORKS

idea of Reverse Reachable (RR) Sets, initially presented by Borgs et al. [36],
and improved by Tang et al. [246]. Given a random node v in a graph and a
world outcome, a reverse reachable set is such a set of nodes, that activation
of any node in that set would lead to activation of v. Sampling v and world
outcomes lead to a collection of RR sets. Then, a node that is a member of
the largest number of RR sets is the most influential. The idea of RR sets
is somehow close to the idea of Inverted Indexing [145] and Bichromatic Re-
verse Nearest Neighbor (BRNN) technique [52, 282], used in Optimal Location
Queries. We talk about the BRNN technique in Chapter 8, and use RR-based
solutions in Chapters 10 and 11 of the thesis.

The problem dual to IM is the Node Immunization (NI) problem. Orig-
inating from the field of immunology [69, 234], the problem is to allocate a
limited amount of vaccines in a network so to suppress a virus epidemics. We
consider this problem in Chapters 10 and 11 of the thesis. IM and NI together
form a larger class of problems of Diffusion Spread Control [227], and Network
Robustness, which we study in Chapter 11.

Chapter 7

Robustness and Fairness

Our special interest in RAN is robustness and fairness of solutions. A solution
is robust if it preserves high effectiveness under adversarial perturbation of an
input data. The robust version of RAN can be seen as a two-player game,
where the role of a second player is an adversary that designs the perturba-
tion [114]. The problem is formulated with a minimax objective

max
Ω

min
Φ

f(Ω, Φ)

where Ω is a set of possible choices for the player who seeks a robust outcome,
Φ is a set of choices of the adversary, and f(Ω, Φ) is a set function that defines
an outcome of the game. In 1928 John von Neumann published the first
minimax theorem [260]. It states that for any compact convex sets Ω and Φ,
and a concave-convex function f ,

max
Ω

min
Φ

f(Ω, Φ) = min
Φ

max
Ω

f(Ω, Φ)

The theorem is considered as the starting point of Game Theory. A solution
where none of the players can benefit from changing their own strategy is called
the Nash Equilibrium. A two-player zero-sum game can be formulated as an
LP program, and the Nash equilibrium corresponds to the optimal solution of
the primal and dual problems [66]. The notion of equilibrium was expanded to
more complex games and decision-making problems with uncertainty, where
the equilibrium might not exist. A question of finding the equilibrium in dif-
ferent types of games is an active topic in DS, and Multi-Agent Reinforcement
Learning in particular [88, 213].

7.1 Fairness as a Form of Robustness
The Nash Equilibrium has been linked to the notion of fairness [88]. Seen
as an optimization problem, fairness also appears with a maximin objective
maximizing the worst-case profitability among agents [159]. Hence fairness

41

42 CHAPTER 7. ROBUSTNESS AND FAIRNESS

in this sense is another name for robustness. Other concepts of fairness ex-
ist [215], such as minimization of the difference in profitability among any two
agents [70, 212, 243]. A more detailed review is provided in Section 9.2.

7.2 Fairness and Robustness in Resource
Allocation

In this thesis, we study the problems of robustness and fairness of RAN with
flow-type and diffusion-type interactions. For the flow-type interaction, we
note few works on Robust FL [107, 236], fair FL with pricing [274], and con-
centrate on fair RAN under MDP framework in Chapter 9. Specifically, we
consider the optimization of driver-oriented fairness in the taxi cruising prob-
lem. Nikulin et al [197] provides a bibliography with robust flow-type combi-
natorial optimization problems.

In 2017, Jegelka and Staib [239] suggested to apply submodular minimiza-
tion in the problem of Robust Budget Allocation. Interestingly, the work puts
two types of consumer-resource interaction under one umbrella of submodu-
lar optimization. The problems mix Stochastic Bipartite Matching, FL and
IM. The goal is to allocate a budget over a stochastic bipartite graph, where
a budget for a node indicates how many attempts the node has to influence
the target. The solution is based on submodular minimization and gradient
descent.

For the diffusion-type interaction, we study a two-player game, where one
player solves the IM problem, another - the NI problem. The maximin objec-
tive in the context of IM was first proposed by He and Kempe in 2016 [114].
In Chapter 11, we expand their study with additional experiments and pro-
pose to use the robustness objective as a measure of robustness of a stochastic
network. Then, we propose 3 novel robustness measures, depending on a se-
quence of maximum, minimum and expectation operators in the objective,
and study how robustness of different network types depends on the sequence.
The expectation is over diffusion outcomes. Our study is seeder-oriented, and
a particular sequence depends on a seeder awareness about an environment
and the opponent. Unlike the work of Zhang et al., we also vary the position
of the maximization operator.

7.3 Connections to Other Areas

Our study relates to the study on Robust Neural Networks [297]. A neural
network adversarial attack (NNAA) occurs before or after training; this dis-
tinction is similar to our distinction of attacks before or after diffusion, namely
causative or exploratory attacks. Seed selection in the Robust IM context is
similar to the selection of the node to classify in the NNAA context. The

7.3. CONNECTIONS TO OTHER AREAS 43

training process of a neural network is an analogy of the expectation oper-
ator, a function that brings uncertainty due to its nature or computational
intractability. Our study suggests a new interesting research question, where
seeding (selection a node for classification) is done after the attack. The solu-
tions of Zuenger et al. [297] are based on the “surrogate model”, a linearized
model, similarly to the Proxy-based techniques in IM literature.

Another relevant study was presented by Zhang et al [286]. Authors con-
sider decision making under the Multi-Agent Markov Decision Process frame-
work, and provide several definitions of fairness depending on the position of
the expectation operator in a maximin objective.

Part II

Publications

45

Chapter 8

Multicapacity Facility
Selection in Networks

Consider the task of selecting a set of facilities, e.g., hotspots, shops, or utility
stations, each with a capacity to serve a certain number of customers. Given
a set of customer locations, we have to minimize a cumulative distance be-
tween each customer and the facility earmarked to serve this customer within
its capacity. This problem is known as the Capacitated k-Median (CKM)
problem. In a data-intensive variant, distances are calculated over a network,
while a data set associates each candidate facility location with a different
capacity. In other words, going beyond positioning facilities in a metric space,
the problem is to select a small subset out of a large data set of candidate
network-based facilities with capacity constraints. We call this variant the
Multicapacity Facility Selection (MCFS) problem. Linear Programming solu-
tions are unable to contend with the network sizes and supplies of candidate
facilities encountered in real-world applications; yet the problem may need to
be solved scalably and repeatedly, as in applications requiring the dynamic
reallocation of customers to facilities.

We present the first, to our knowledge, solution to the MCFS problem
that achieves both scalability and high quality, the Wide Matching Algorithm
(WMA). WMA iteratively assigns customers to candidate facilities and lever-
ages a data-driven heuristic for the Set Cover problem inherent to the MCFS
problem. An extensive experimental study with real-world and synthetic net-
works demonstrates that WMA scales gracefully to million-node networks and
large facility and customer data sets; further, WMA provides a solution quality
superior to scalable baselines (also proposed in the chapter) and competitive
vis-á-vis the optimal solution, returned by an off-the-shelf solver that runs
only on small facility databases.

The content of this chapter was published in Proceedings of the 35th IEEE
International Conference on Data Engineering (ICDE 2019), in co-authorship
with Panagiotis Karras and Christian S. Jensen [173].

47

48
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

(a) Las Vegas (b) Copenhagen

Figure 81: Customers (red), and cafés (blue).

8.1 Introduction

A type of problem arising in smart city applications calls for selecting an
attractive subset out of a set of candidate facility locations (e.g., telecommu-
nications hotspots, meeting points, bike stations, recycling stations, electric
vehicle charging stations, or waste disposal sites) to provide a service in an
urban network. The fitness of the selected set is measured by means of total
convenience or utility with respect to a set of geographically located customers.
This problem may need to be solved repeatedly; for example, one may need to
periodically decide on a set of service locations, depending on which customers
declare interest for a certain offering.

The input data typically includes a weighted graph, representing a road
network and associated candidate facility locations and customer locations.
Figure 81 provides two examples, where we need to select a subset out of a
set of eligible facilities (in blue) so as to serve a predefined set of customers
(in red) in Las Vegas or Copenhagen.

In the Multicapacity Facility Selection (MCFS) problem, each candidate
facility has a capacity, and we need to choose k facilities and assign each
customer to one of them while observing the capacity constraints; as the
number of served customers is bounded by capacity constraints, an objective
of maximizing that number does not arise; the objective is to optimize a notion
of customer convenience, defined in terms of the distances between customer
and the facilities they are assigned to. The MCFS problem amounts to the
hard and nonuniform case of the capacitated k-median (CKM) problem [178]
over a network. Here, hard indicates that only one facility can be placed at

8.1. INTRODUCTION 49

a certain location; the soft version allows for multiple facilities at the same
location. Next, nonuniform indicates that facility capacities differ; in the
uniform version, all capacities are equal. Last, the network setting need not
yield a metric distance notion.

Unfortunately, the problem is already NP-hard in the soft and uniform
case over a metric space [146]. Small instances can be solved exactly by Lin-
ear Programming (LP) and Mixed Integer Programming (MIP) solvers [109].
However, such solvers do not scale beyond networks with a few thousand
nodes. Past research has proposed LP relaxation [84] methods that provide
approximation guarantees while violating constraints on facility capacity or
cardinality. The most recent works in the area introduce an LP formulation,
called rectangle LP, tailored to the uniform [163] and soft nonuniform [161]
capacitated k-median problems, and develop rounding algorithms that achieve
constant approximation guarantees while violating the cardinality constraint
k. Such solutions remain impracticable in real-world applications due to their
high-polynomial time complexities, while an approximation algorithm for the
nonuniform hard-capacitated case has yet to be developed [162].

Local search techniques exist for the CKM problem and related facility lo-
cation problems [57, 146], known as group nearest group queries in the database
community [74]; however, such solutions solve only the uncapacitated and uni-
form soft-capacitated problem cases; they accommodate neither nonuniform
nor hard capacity constraints. Thus, to our knowledge, no existing solution
achieves both high quality and scalability to large networks and customer sets
in the MCFS problem.

We present an effective and scalable MCFS solution, the Wide Match-
ing Algorithm (WMA). WMA progressively assigns customers to strategically
chosen candidate facilities, translating a bipartite assignment under capacity
constraints to a network setting, and decides on its termination by means of
a Set Cover heuristic. We contribute the following:

• We attempt the first, to our knowledge, solution for the MCFS problem
that achieves high quality and is applicable to large real-world networks.

• We develop an algorithm, WMA, that combines a data-driven heuristic
for set cover with a principled spatial assignment subroutine.

• We introduce a reasonable baseline MCFS heuristic that clusters cus-
tomers in groups satisfying capacity constrains, following a Hilbert space-
filling curve.

• We conduct an experimental study with synthetic and real data, demon-
strating that WMA scales to million-node and million-edge networks
with large customer and facility sets and achieves near-optimal solution
quality, as seen in cases where the exact solution can be computed.

50
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

8.2 Problem Statement

Consider a network represented as a weighted (directed or undirected) graph
G = (V, E, W), where V is a set of nodes that model urban locations such
as intersections and road ends, E is a set of edges that model road segments,
and W is a mapping from edges to positive integer weights that model road
segment lengths. Further, we are given a set of m customers S = {si}mi=1 ⊆ V ,
and a set of ℓ candidate facility locations Fp = {fj}lj=1 ⊆ V ; each fj ∈ Fp

comes with a capacity constraint cj . Given a cardinality value k, the problem
is to select k candidate facilities F ⊆ Fp, |F | ≤ k and assign each customer
to exactly one facility in F , so that each selected facility fj ∈ F is at most cj

assigned customers and the sum of network distances between customers and
their allocated facilities is minimized.

We use two binary variables xj and yij ; xj indicates whether the candidate
facility at node vj is selected, j ∈ {1..ℓ}, while yij indicates whether the
customer at node vi is assigned to the facility at node vj . Also, let dij be
the shortest-path distance between vi and vj . Note that dij values need not
define a metric matrix and need not be given as input; instead, they may
be computed on the fly over the input network, a feature distinguishing our
problem setting. Then, our minimization objective over xj and yij is:

min
xj ,yij

∑
i

∑
j dijyij (8.1)

subject to:

yij ≤ xj , xj , yij ∈ {0, 1} (8.2)

∑
j yij = 1,

∑
i yij ≤ cj ,

∑
j xj ≤ k (8.3)

Constraint (8.2) implies that a customer can be assigned to a node vj

where a selected facility is located. The other constraints stipulate that each
customer is assigned to exactly one facility, a facility vj is matched with at most
cj customers, and k facilities are selected. Table 81 outlines our notations.

8.3 Related Work

An array of facility location problem variants have attracted attention for a
long time. Farahani and Hekmatfar [84] provide a comprehensive overview of
state-of-the-art algorithms for several of those variants. These algorithms are
mostly based on linear programming (LP), using LP-rounding and Lagrangian
relaxation as approximation tools. The problem we study is a network-based
version of the nonuniform hard-capacitated k-median problem [67, 163, 178].

8.3. RELATED WORK 51

Notation Description
G A weighted graph (network)
E, V Sets of edges and nodes in G
v.dist Distance from considered customer to node v
v.p Potential of node v
dist(v1, v2) The shortest path distance between nodes v1 and v2 in G
S ⊆ V Locations of customers
n Number of nodes in G, n = |V |
m Number of customers
k Number of selected facilities
ℓ Number of candidate facilities
cj Capacity of facility j
Fp ⊆ V Set of candidate facility locations
F ⊆ Fp Selected facilities, |F | = k
Gb Bipartite directed graph between C and Fp

E′ Set of edges in Gb

dij Distance between i-th customer and j-th candidate facility
xj ∈ {0, 1} Indicator of whether fj is in F
yij ∈ {0, 1} Indicator of whether si is allocated to fj

di Demand of a customer si in bipartite graph Gb

σ Assignment of customers to facilities in Gb

σj(Gb) Set of customers assigned to facility fj ∈ Gb

Table 81: Notations.

Scalable Facility Location

Some recent works consider a special facility location problem variant, called
Optimal Location Query (OLQ) [52, 57, 280, 282], which calls to place a
single new facility that attracts the highest amount of customers (the MaxSum
objective), or minimizes the maximum distance between a customer and its
nearest facility (the MinMax objective).

OLQ solutions are based on a Bichromatic Reverse Nearest Neighbor (BRNN)
technique, where each customer is associated with a Nearest Location Region
(NLR), such that each point therein is closer than the nearest existing facil-
ity. To optimize for MaxSum, we place a new facility in the region with the
highest amount of overlapping NLRs [52, 282]. To optimize for MinMax, we
sort customers by distance to nearest facility, obtain a set of top-k customers
whose NLRs’ intersection is nonempty, and find an optimal region therein [57].

As the OLQ bears some resemblance to to the MCFS problem, we could
apply it iteratively, as a heuristic, to obtain a solution to MCFS. Figure 82
illustrates the result of facility selection by such an approach, employing the
intuitively reasonable MaxSum objective. We start with no facility placed and
select node 1 for the first facility, as it is the one that minimizes the aggregate

52
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

distance to customers a, b, c. Dashed curves in the figure indicate the resulting
NLRs for each customer. Node 2 has the highest number of intersecting NLRs
(i.e., attracted customers), so we select it. Yet the optimal MCFS solution is
to select nodes 4 and 5. Thus, unfortunately, placing facilities by an iterative
BRNN-based approach does not fare well with our optimization objective.

We implemented a BRNN-based approach that sequentially selects k nodes
as facilities, recalculating a set of NLRs at each step and breaking ties arbi-
trarily. We include this approach in our experimental comparison; as we will
see, its results are significantly worse than those of other approaches.

Figure 82: BRNN application Figure 83: Example network G

Bipartite Matching

The MCFS problem implies a bipartite matching of customers with facilities.
To address this need, we adapt the Simplified Incremental Algorithm (SIA)
[256, 257] from the case of Euclidean distances to that of network distances.
SIA adapts the Successive Shortest Path Algorithm (SSPA) [75] to a bipartite
graph, enhancing it with an edge pruning capability, which allows finding a
provably optimal matching after accessing only a few edges adjacent to each
node, using an edge weight threshold derived from node potentials. In Section
8.5, we enhance this pruning threshold.

8.4 The Wide Matching Algorithm

In a nutshell, the Wide Matching Algorithm progressively enriches candidate
facilities with potential serviced customers until it finds a set of k facilities
that can service the full customer set within their capacities.

Algorithm Overview

Throughout the operation of the algorithm, each customer si maintains an
increasing demand value di, reflecting the number of candidate facilities in Fp

it has to be assigned to. In each iteration, we increase the demand of a chosen

8.4. THE WIDE MATCHING ALGORITHM 53

subset of customers and assign each customer with increased demand to exactly
one new facility; while doing so, we may rewire previous choices, i.e., reallocate
previous customer-to-facility allocations, if beneficial, while observing capacity
constraints. Thereby, customers explore candidate assigned facilities, though
eventually they are allocated to exactly one of those. We then select a subset
F ⊆ Fp, |F | = k, such that the elements of F collectively cover (i.e., are
allocated to within their capacities) as many customers as possible, by means
of a Set Cover heuristic; this heuristic iteratively picks a facility that brings
the biggest marginal gain to the number of covered customers. We resolve
ties by selecting the facility f chosen least recently in previous iterations. This
diversification strategy avoids getting trapped in non-optimal local minima.
An exploration vector specifies the increase of di values per iteration: ∆di is
set to 1 if and only if si has been left uncovered by the set F selected in the
previous iteration and di < ℓ; this choice lets all customers grow their demand
values evenly. The main phase WMA terminates when it detects a subset
F ⊆ Fp that covers all customers in S, or all demands reach ℓ; the latter case
invokes special measures, which we discuss in Section 8.4.

Example

We illustrate the operation of WMA with an example. Figure 83 shows a
network of 9 nodes, ai for customers and bj for candidate facilities. For visu-
alization’s sake, we do not place facilities on the same nodes as customers.

Assume we have to place k = 2 facilities, with uniform capacity c = 2.
Figure 84 shows the bipartite graph Gb from customers to candidate facilities
across iterations. Each edge is weighted by the distance between its adjacent
nodes. Table 82 depicts part of the adjacency list of Gb with each node’s three
nearest adjacent nodes in ascending order.

a1 b4(1) b2(4) b5(9)
a2 b5(1) b6(2) b3(9)
a3 b1(1) b2(4) b4(9)
a4 b3(1) b2(5) b6(6)

Table 82: Sample adjacency list for Gb; weights in brackets.

First, each customer is matched to its nearest facility in Figure 84a. Now
each of the four facilities covers one customer. We resolve ties arbitrarily,
selecting two facilities out of four, b4 and b5, and set the exploration vector to
∆d = {0, 0, 1, 1}.

In effect, a3 and a4 need to explore the network further. They do so and
both acquire a new match, facility b2, obeying the capacity constraint c = 2.
Thus, by the end of the second iteration, a1 and a2 have been matched to one
facility each, while each of a3 and a4 has been matched to two facilities. Now

54
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 84: Bipartite graph Gb through WMA iterations.

b2 is the most popular facility, in the sense that it is matched to more cus-
tomers than any other facility, namely customers a3 and a4. After discounting
these covered customers, the second most popular facility in terms of marginal
gain is either b4 or b5, bringing a gain of one customer each, i.e., a1 and a2,
respectively. We arbitrarily select one of the two, b5. At this point a1 is the
only uncovered customer. Hence, we set ∆d1 = 1 and ∆di = 0 for the other
three customers, as Figure 84b illustrates.

The third iteration (Figure 84c) demonstrates the benefit of using an as-
signment algorithm. Now a1 has a demand to be matched with two facilities,
yet its next nearest facility, b2, has reached its capacity; a greedy approach
would then match a1 to b5, the next nearest available facility. Rather than
doing so, our matching algorithm rewires previous choices, i.e., reconsiders
previous allocations and substitutes them with new ones, if beneficial: in par-
ticular, it reassigns a4 to b6 so that it can assign a1 to b2. The newly used
b6 along with b2 collectively cover a1, a3, and a4. Now a2 is uncovered, and
hence ∆d2 = 1. Eventually, the fourth iteration matches a2 to b6. Now two
facilities, namely b2 and b6, cover all customers, as Figure 84d shows, with
objective value 16.

Algorithm Outline

WMA operates on a complete directed bipartite graph between customers
and candidate facilities, and progressively satisfies demand and capacity con-
straints by bipartite matching. This operation can be time consuming on a
complete graph, while previous work has not considered bipartite matchings
among nodes anchored in a network. Still, we effectively transfer a prun-
ing technique for bipartite matching with Euclidean distances [256, 257] to a
network setting.

The core idea is this: if we can ascertain that there is no possible beneficial
reassignment that would match node ai to bj , we can eschew bj from consid-

8.4. THE WIDE MATCHING ALGORITHM 55

eration. To ascertain that, we do not need to know the exact weight of edge
(ai, bj); it suffices to know that bj is farther than another possible match, bk.
We can expand knowledge of such weights incrementally on demand, running
an instance of Dijkstra’s algorithm on G per customer in each iteration.

Algorithm 1 outlines WMA. In each iteration, we first try matching with
current customer demands (Lines 4–5); then we check whether we can select
a set of facilities F that cover all customers (Line 6); if we cannot, we raise
demands appropriately (Lines 7–8). Lines 10–11 cover the special case where
there exists a set F such that |F | < k and F already covers all customers. In
that case, we locate the remaining k−|F | facilities in the vicinity of customers
with the most unsuccessful assignments; this measure retains coverage and im-
proves the cost objective. Algorithm 4 in Section 8.4 illustrates this process.
In case the k selected facilities fail to cover some customers even after their
demands reach ℓ, Lines 12–13 revise F ensuring it suffices to cover all cus-
tomers, i.e., all disconnected network components. Algorithm 5 in Section 8.4
provides the details. Eventually, Lines 14–15 call the same process recursively,
setting the demand of each customer to 1, so as to build a single optimal-cost
assignment, σ(Gb), of customers to the k selected facilities in F ; the edges in
σ(Gb) outgoing from a selected facility fj define the set of customers σj(Gb)
matched to fj .

WMA maintains two graphs throughout its operation: first, the input net-
work G that contains locations of customers and candidate facilities; second,
the bipartite graph Gb, used for extracting assignments among those entities.
Edge weights in Gb reflect shortest-path distances between customers and fa-
cilities in G. We assume that a single facility can be located on any network
node; the algorithm can be straightforwardly extended to any restrictions on
such placements by tuning the candidate facility nodes in Gb.

Matching Function

Let us discuss the matching function that iteratively assigns new customers to
facilities in Gb and reassigns previously matched pairs. The complete bipartite
graph Gb has ℓ ·m edges, where each edge requires an execution of Dijkstra’s
algorithm for its weight calculation. For large problem instances, that would
cause excessive computation. Therefore, we add edges to Gb only on demand.

We initialize Gb with two sets of nodes: customers and facilities, without
edges. We add edges progressively, running a variant of the Successive Shortest
Path Algorithm (SSPA) [75] with node potentials; such potentials encapsulate
the goodness of the current arrangement for a node in question, so that we can
calculate the benefit of updates involving that node. The process terminates
when we can guarantee that the running matching is optimal in the complete
Gb. The SSPA solves the Minimum-Cost Flow problem (to which bipartite
matching is reduced) using iterative Dijkstra executions from a source to a
sink, and flow augmentation. In our problem, the source is a customer s, the

56
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

Algorithm 1 Wide Matching Algorithm
1: function LocateFacilities(G, S, Fp, k)
2: Gb ← Bipartite empty graph based on G
3: di = 1 ∀i
4: repeat
5: for all si ∈ S : di > |{fj |si ∈ σj(Gb)}| do
6: Gb ← FindPair(Gb, si)
7: {F, ∆d, covered} ← CheckCover(Gb, k)
8: d← d + ∆d
9: until ∀i ∆di = 0

10: if |F | < k then
11: SelectGreedy(F, G)
12: if not covered then
13: F ← CoverComponents(S, F, G)
14: if |Fp| > k then
15: return LocateFacilities(G, S, F, k)
16: else
17: return F, σ(Gp)

sink is the closest non-fully occupied facility in Gb; flow augmentation amounts
to substituting an edge with one of opposite weight (given that a customer can
be matched to each facility only once). SSPA guarantees optimality by adding
new edges in an order sorted by weight: it maintains the running weight of the
next candidate edge to be taken into consideration, and derives a threshold
indicating whether that weight can affect the current solution. We discuss this
threshold in Section 8.5. We achieve this order by one Dijkstra execution per
customer, yielding distances to candidate facilities in non-decreasing order;
such distance values give the weights of new edges in Gb.

Algorithm 2 presents the pseudocode for matching a customer in Gb and
updating the running assignment by rewiring as necessary. The loop of Lines
4–12 adds edges to Gb until it can accept a new match for the given customer.
In each iteration, we run a Dijkstra instance on Gb (Line 8), to find a shortest
path in Gb from the given customer s to the nearest usable (i.e., not fully
occupied) facility; this Dijkstra instance works with weights reduced by po-
tential values v.p, and it returns the found path and the set of visited nodes.
We add each visited node v to a heap with a threshold value that we justify in
Theorem 1 (Section 8.5). This threshold depends on the distance from v to
its next nearest neighbor in the network graph G (nnDist), the distance from
customer to v in Gb (v.dist), and a potential value v.p (Lines 9–11). When
the condition in Line 12 is satisfied, we can proceed to update the running
bipartite assignment.

8.4. THE WIDE MATCHING ALGORITHM 57

Algorithm 2 Matching Function
1: function FindPair(Gb, s)
2: heap← empty heap
3: heap.add(⟨s, 0⟩)
4: repeat
5: x← heap.topKey
6: nn← node in Gb for next NN of x in G
7: add edge (x, nn) to Gb

8: {path, visited} ← Dijkstra(s)
9: for all v ∈ visited ∩ S do

10: nnDist ← distance to next NN of v in G
11: heap.add(⟨v, v.dist + nnDist − v.p⟩)
12: until path.length < heap.topValue
13: for all e ∈ path do
14: e← −e ▷ Reverse edge
15: w(e)← −w(e) ▷ Reverse edge weight
16: for all v ∈ visited do
17: v.p← v.p + path.length − v.dist
18: return Gb

WMA runs two independent Dijsktra instances: one on the bipartite graph
Gb (Line 8) for the sake of updating its running assignment and another on
the network graph G (Line 10) for the sake of incrementally calculating edge
weights on Gb. As both operate over graphs, they require no spatial index.
The path found in Line 8 contains a new match, while observing capacity
constraints. Then, the loop of Lines 13–15 performs flow augmentation: it in-
creases the flow value by 1 along this path and performs necessary assignment
and reassignment actions. Line 17 adjusts potential values.

One execution of the Matching Function assigns exactly one facility to one
customer. The flow augmentation in SSPA is constrained only by the target’s
capacity and edge capacities; therefore, it is possible to augment flow by more
than one in some cases. However, we do not need to do so, as we need not
ever match the same customer with the same facility again. As we want many
customers to be assigned to each facility, we set the capacities of edges in Gb

to 1; thus, whenever time a customer is assigned to a candidate facility by
FindPair, the flow is increased by 1.

Set Cover Routine

The need check whether we can select a subset F that covers all customers
raises a Set Cover problem. As this problem is NP-hard, we employ a
heuristic solution. After each iteration, we rank all candidate facilities by

58
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

their (dynamically updated) marginal gains and greedily select the top-k. If
our selection covers all customers, WMA terminates. Algorithm 3 illustrates
this approach. We place all candidate facilities in a heap, organized on the
number of customers they cover, and extract facilities from the heap one by
one, checking whether all customers served by the last extracted facility f
remain uncovered. If so, we include the facility in our selection. Otherwise,
we recalculate that facility’s marginal gain and put it back in the heap. If
we reach k facilities without achieving full coverage, we have not yet reached
termination.

Algorithm 3 Checking top-k facilities
1: function CheckCover(Gb, k)
2: heap ← empty heap
3: for all fj ∈ Fp do
4: fj .m← |σj(Gb)|
5: heap.add(⟨fj , fj .m⟩)
6: F ← ∅, ∀i ∆di ← 1
7: for γ ∈ {1..k} do
8: fj ← heap.top
9: m′ ← |σj(Gb)|

10: if fj .m ̸= m′ then
11: fj .m← m′

12: heap.add(⟨fj , fj .m⟩)
13: else
14: F ← F ∪ fj

15: for all {si|si ∈ σj(Gb) ∨ di = ℓ} do
16: ∆di ← 0
17: if ∀i ∆di = 0 then
18: return F , ∆d, true
19: return F , ∆d, false

Updating Demands

A crucial operation in WMA is the update of customer demands. A simple
approach would increase the demand of all customers by 1 in each iteration.
We have found that it is much more effective to increase the demand by 1 only
for those customers that were not covered in the last iteration. This selective
increase introduces those uncovered customers to more facilities, increasing
the chances that they get covered sooner rather than later. Further, we keep
track of how recently a facility has been used in a previous iteration to break
ties between facilities that incur equal marginal gains.

8.5. MATCHING OPTIMALITY 59

Special Provisions

We have noted that Algorithm 1 (Section 8.4) makes provisions for two special
cases: the case in which fewer than k facilities already cover all customers,
and the one in which k facilities fail to cover some customers even after their
demands reach ℓ. Here we describe these provisions.

Algorithm 4, called in Line 11 of Algorithm 1, provides the former special
provision: it selects additional facilities until |F | = k. Each iteration of the
main loop adds to F a new facility f∗ ∈ Fp \F that is nearest to the customer
s having the highest current distance to the nearest facility in F . Thereafter,
Lines 14–15 in Algorithm 1 build an assignment using the enlarged F , yielding
improved cost.

Algorithm 4 Greedy addition of facilities
1: function SelectGreedy(F, Gb)
2: while |F | < k do
3: s∗ ← arg maxs{minf∈F dist(s, f)|s ∈ S}
4: f∗ ← arg minf{dist(s∗, f)|f ∈Fp \ F}
5: F ← F ∪ f∗

Algorithm 5 provides the latter special provision: it receives a set of se-
lected facilities F as input and replaces facilities therein to ensure that each
connected component of G is allocated sufficient capacity to cover all its cus-
tomers. Line 3 calculates the difference g.p between the collective capacity of
selected facilities that are within connected component g, which we denoted
as the set Fg, and the number of customers in g, |Sg|. A positive value of g.p
indicates that the facilities allocated to g by F suffice to cover the customers
therein, with some possible reallocation. A negative g.p means that compo-
nent g should be offered more facilities or facilities with higher capacities. The
loop in Lines 4–9 runs as long as a component with negative g.p exists, sub-
stituting the lowest-capacity selected facility f in the highest-g.p component
gM with the highest-capacity unselected facility in the lowest-g.p component
gm. Theorem 3 proves that, if a solution exists, this loop terminates.

8.5 Matching optimality
Here, we prove that the FindPair routine of Section 8.4 yields an optimal
assignment, even while using a simpler pruning criterion than the one in [257].

The sets of customers S = {si} and facilities Fp = {fj} form the two
sets of nodes in bipartite graph Gb. E′

f is the complete set of all possible
edges of Gb, while E′ is the set of edges that we are choosing to add to Gb.
Also, dist(si, fj) is the weight of edge (si, fj) ∈ E′

f ; by the definition of Gb,
dist(si, fj) is the shortest-path distance between customer si and facility fj

in graph G; v.dist denotes the length of the shortest path sp from customer

60
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

Algorithm 5 Selecting facilities that cover all customers
1: function CoverComponents(S, F, G)
2: for all g – connected components of G do
3: g.p←

∑
fj∈Fg

cj − |Sg|

4: while ∃g : g.p < 0 do
5: gm ← arg ming{g.p}
6: gM ← arg maxg{g.p}
7: f ← arg minfj

{cj |fj ∈ gM}
8: F ← (F \ {f}) ∪ arg maxfj

{cj |fj ∈ gm, fj /∈ F}
9: Update g.p, g′.p

10: return F

to node v found by Dijkstra on Gb, and v.p the potential of v; there is one
Dijkstra execution for each FindPair call.

An assignment is optimal if ∄{si, fj} ∈ E′
f \ E′, such that adding (si, fj)

to E′ would yield a better assignment. Notably, each call of FindPair(Gb, s)
updates the running assignment as soon as it finds in E′ a shortest path
sp from customer s to a non-fully occupied facility. Then the assignment
is optimal iff E′

f contains no other path sp′, from s to a non-fully occupied
facility, such that sp′.length < sp.length [257].

Line 12 of Algorithm 2 verifies this optimality condition. Once the condi-
tion is satisfied and the loop is over, the assignment is defined for a current
E′, and the flow augmentation phase follows.

Theorem 1. Let sp be the shortest path from customer to a non-fully occupied
facility in E′ and

sp.length ≤ min
i,j
{si.dist + dist(si, fj)− si.p}. (8.4)

Then sp is the shortest path from customer to a non-fully occupied facility
in E′

f .

Proof. The Dijkstra’s algorithm call in Line 8 of Algorithm 2 adjusts edge
weights by node potentials to remove any negative cycles created by flow aug-
mentation. The original weight of an edge (v1, v2) is w(v1, v2) = dist(v1, v2),
while its reduced weight is

wr(v1, v2) = dist(v1, v2)− v1.p + v2.p, (8.5)

where dist(v1, v2) is the distance between v1 and v2 on G. The length of any
path in Gb found by Dijkstra is calculated as the sum of reduced weights.
Since ∀v v.p ≥ 0, Equation (8.4) implies that

sp.length ≤ min
i,j
{si.dist + dist(si, fj)− si.p + fj .p}. (8.6)

8.6. ANALYSIS OF WMA 61

Due to Equation (8.5), Equation (8.6) means that

sp.length ≤ min
i,j
{si.dist + wr(si, fj)} (8.7)

Now, assume another path sp′ from customer to a non-fully occupied
facility exists that is shorter than sp and includes at least one edge (s′, f ′) ∈
E′

f\E′. Then the length of sp′ includes the reduced weight of the edge (s′, f ′):

sp′.length ≥ s′.dist + wr(s′, f ′) (8.8)

Yet after edge (s′, f ′) is included in Gb, tautologically,

s′.dist + wr(s′, f ′) ≥ min
i,j
{si.dist + wr(si, fj)} (8.9)

By Equations (8.8), (8.9), and (8.7), we get a contradiction:

sp′.length ≥ min
i,j
{si.dist + wr(si, fj)} ≥ sp.length (8.10)

In contrast, the threshold used by U et al. [257] is:

sp.length ≤ min
i,j
{si.dist + dist(si, fj)} − τ ′

max (8.11)

τ ′
max = max{s.p|f.dist ≤ min

i,j
{si.dist + dist(si, fj)}} (8.12)

The bound we employ is tighter in case the minimizing s in Equation
(8.4) has s.dist > min

i,j
{si.dist + dist(si, fj)} and s.p > τmax. Besides, this

τmax-based threshold burdens Algorithm 2 with the overhead of maintaining
τmax.

8.6 Analysis of WMA
Theorem 2. The worst-case complexity of WMA is:

O(m|E| log n + m2ℓ2(log(ℓ + m) + k log ℓ)) (8.13)

Proof. The matching function of WMA finds a usable facility by iteratively
adding new edges to Gb. To that end, it maintains a heap of at most m
candidate edges. In the worst case, the heap has to be fully rebuilt at each
iteration. If the candidate facility reached by the Dijkstra call on Gb does not
satisfy the optimality criterion in Line 12 of Algorithm 2, the loop reiterates.
This condition can be violated only if there exists an edge that should be added
to E′. As Gb has at most mℓ edges, the Dijkstra result can be invalidated at
most mℓ times. Thus, Dijkstra’s algorithm is called at most mℓ times. With a
heap-based implementation of Dijkstra applied on a sparse connected graph,

62
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

the complexity is O(|E′| log(m + ℓ)), where |E′| grows iteratively from 0 to
mℓ. While Dijkstra’s algorithm runs on Gb with every FindPair() call, we
also run another Dijkstra instance on the graph G for each customer. New
edges in E′ result from successful executions of that instance, while the heaps
for these executions per customer persist across FindPair() calls. This gives
an additional O(m|E| log n) complexity. The combined complexity is:

O(m|E| log n + m2ℓ2 log(m + ℓ))

CheckPopular() builds a heap of all reached candidate facilities in O(ℓ log ℓ).
At each greedy iteration, we check the top value of the heap and update it if
needed. In the worst case, we may update the whole heap. In total, we do k
greedy steps and return false if no set cover is found within the top-k facilities.
Then the complexity of the set cover routine per iteration is O(kℓ(log ℓ + m)),
where m stands for checking whether all customers are covered. The total
number of iterations is m · ℓ, since, in the worst case, we increase the demand
of only one customer by 1 in each iteration. Putting it all together, the total
worst-case time complexity is:

O(m|E| log n + m2ℓ2(log(ℓ + m) + k log ℓ))

As our experiments document, WMA performs far below this worst-case
complexity thanks to its pruning ability.

Theorem 3. WMA provides a correct solution if one exists.

Proof. The main loop in Algorithm 1 terminates when no ∆di is increased,
i.e., when a set cover is found or all uncovered customers reach demand di =
ℓ. In both cases, it selects a set of facilities F with cardinality |F | ≤ k; if
|F | < k, Algorithm 4 amends it so that |F | = k. Algorithm 5 revises F to
ensure that all disconnected components of G are allocated sufficient capacity.
Let kg be the minimum number of facilities required to cover all customers
Sg within component g, kg = minF ′{|F ′| :

∑
fj∈F ′ cj ≥ |Sg|, F ′ ∈ g}. A

solution to MCFS is feasible if and only if the budget k suffices to allocate
to each component g at least kg facilities, i.e., iff

∑
g kg ≥ k. Algorithm 5

proceeds towards a state where each component g is allocated a set of top-kg

facilities in terms of capacity values. Therefore, if a solution is feasible, it
eventually terminates. Last, the recursive call in Algorithm 1 produces an
optimal bipartite assignment from customers to facilities that does not violate
any capacity constraint.

8.7 Experiments
Given the impracticality of approximation algorithms [163], we compare WMA
vs. an optimization solver, the Gurobi Optimizer [109], and three simple

8.7. EXPERIMENTS 63

Figure 85: Randomly scattered points used to generate networks.

baselines. Our implementations are in C++. We run all experiments on a 2.2
GHz AMD Opteron 6376 machine with 512GB RAM running Ubuntu 14.04.

Baselines

The first baseline follows an approach as in [188]: it divides the input cus-
tomer set into k buckets and assigns each bucket to the candidate facility
node closest to the bucket’s centroid. We form buckets containing ⌈m/k⌉ con-
secutive customers using the spatial order defined by a Hilbert space-filling
curve [136]. We denote this baseline as Hilbert. The second baseline is a
BRNN-based method that iteratively selects k nodes, calculating NLRs at
each step; it then runs SIA to produce a final assignment from customers
to selected facilities and obtain the objective value. The third baseline is a
simplified version of WMA, WMA Naïve. Instead of using an exact bipartite
matching, WMA Naïve uses a greedy procedure to satisfy customer demands:
in each iteration, it processes customers in a randomly generated order and
assigns each customer to its closest di candidate facilities that have not yet
reached their capacities.

Datasets

We use synthetic and real-world networks. Our real-world data are road net-
works in Aalborg, Riga, Copenhagen, and Las Vegas, obtained from Open-
StreetMap1. Table 83 provides statistics. We report objective values and
distances in meters.

We create synthetic graphs by placing points on a 103 × 103 square. We
use two distributions, uniform and clustered. In the clustered case, we place
cluster centers uniformly at random. We then assign an equal number of
points to each cluster, and form a Gaussian distribution for each cluster with
the center as mean and σ2 = 1

number of clusters . We connect pairs of points with
an edge if they are closer than α 1√

n
, where α is a tunable density parameter and

1https://www.openstreetmap.org/

https://www.openstreetmap.org/

64
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

Aalborg Riga New Copenhagen Las Vegas
Nodes 50,961 287,927 282,826 425,759
Edges 55,748 322,109 322,349 508,522

Avg degree 2.2 2.2 2.2 2.4
Max degree 7 29 10 21

Avg edge length 30.2 28.7 32.6 50.4

Table 83: Real-world data sets.

n is the network size in nodes. We connect cluster centers to each other in a
clique and assign edge weights equal to Euclidean distances. Figure 85 presents
examples of such distributions for 104 points given 40, 20, and 5 clusters, and
a uniform distribution. On synthetic networks, we select customer locations
uniformly at random. A solution is feasible only if there is enough total
capacity to serve all customers, i.e.,

∑k
j=1 cj ≥ m; in the uniform case, c ≥

⌈m
k ⌉, while an occupancy value, defined as o= m

c·k ≤ 1, indicates how close we
are to full capacity.

Experiments with Uniform Synthetic Data

We first evaluate performance on uniform data when varying the graph size.
We set Fp = V , meaning that a facility can be placed on any node in a
graph. We present results for Gurobi for instances where it completed within
24 hours. When it does not complete in 24 hours, we say that it fails.

In Figure 86a, we use density α=2, which corresponds to an average of two
adjacent edges per node. We randomly assign customers to 10% of all nodes
and set k =0.1m; hence, we need to place facilities at 1% of all nodes; we set
capacities to c = 20, yielding o = 0.5, i.e., capacities are twice the minimum
required size. BRNN performs significantly worse than others, so we elimi-
nate it from further consideration. The objective values attained by Hilbert,
WMA, and Gurobi do not differ significantly, with WMA performing almost
as well as Gurobi. This is because this dataset has a simple uniform structure;
Hilbert handles it well, even without taking network distances in considera-
tion. However, Hilbert deviates from WMA as data size grows. WMA exhibits
a far more scalable runtime trend than Gurobi, which failed on network sizes
beyond 8,192 nodes; WMA scales no less gracefully than Hilbert as the data
size grows. WMA Naïve has similar runtime to WMA, yet its objective value
is more than double that of WMA across the parameter range.

Figure 86b shows results for a similar configuration, but with higher cus-
tomer and facility density. Here, we set capacities to c = 4 and again obtain
an occupancy of o=0.5. Results are similar to the previous ones, though the
divergence of objectives between Hilbert, WMA, and WMA Naïve is more pro-
nounced. Further, the achieved objective values are smaller for all algorithms

8.7. EXPERIMENTS 65

(a) m - 0.1n, k - 0.1m, c - 20, α - 2 (b) m - 0.2n, k - 0.5m, c - 4, α - 2

(c) m - 0.1n, k - 0.5m, c - 10, α - 1.2 (d) Multicapacities, c ∈ [1..10]

Figure 86: Results on uniform distribution, variable graph size.

due to higher density (the y-axis range has changed). Gurobi’s runtime over-
head has increased, as the runtime of LP is highly dependent on the number
of variables and constraints; the other algorithms are less sensitive to those
parameters. Now the runtime of WMA eventually matches that of Hilbert,
even while delivering significantly better quality. WMA Naïve is faster than
Hilbert on larger networks with higher customer and facilitiy densities, as it
eliminates the time-consuming bipartite matching step of WMA.

Figure 86c presents a case with a sparser and less connected network, with
α=1.2, more similar to real road networks. Customer and facility densities lie
between those of the previous two cases, with customers as in Figure 86a and
facilities as in Figure 86b. We set c=10, resulting in an occupancy of o=0.2;
this makes the problem relatively easier, balancing out the effect of network

66
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

sparsity. Even so, the disconnected network structure makes an optimal solu-
tion hard to find. Thus, Gurobi’s runtime is significantly higher than in the
previous case, although the number of decision variables is smaller and the
occupancy is looser. WMA also has a higher runtime, and its objective value is
closer to that of Hilbert, and similar to that in Figure 86a, where we have half
the customers with half the facilities, meaning that the cumulative distances
remain relatively stable. Hilbert also has almost the same objective as before,
as it considers each component separately, calculating required facilities per
component proportionally to the number of customers in the component. On
a graph with many small components, this approach quickly leads to good re-
sults. As in previous experiments, as the scale increases, WMA Naïve becomes
faster than Hilbert.

(a) m - 0.05n, k - 0.1m, c - 20 (b) m - 0.01n, k - 0.8m, c - 5

(c) m - 0.05n, k - 0.2m, c - 20 (d) m - 0.1n, k - 0.1m, c - 20

Figure 87: Results on Clustered Distribution vs. size, α = 2, 20 clusters in
(a,b,c), 5 in (d)

8.7. EXPERIMENTS 67

(a) n - 104, m - 103, k - 103, c - 15, α - 2 (b) c - 10, n - 104, k - 200, α - 1.5

(c) n - 104, k - 128, o - 0.1, α - 1.5 (d) n - 104, m - 103, α - 1.5

Figure 88: Results on Clustered Distribution, 20 clusters. Variable ℓ, m, and k.

We also experiment with nonuniform capacities. Figure 86d shows the
results with settings like those for Figure 86c, except that now each node is
assigned a uniformly random capacity in the range 1 to 10. Hilbert selects
locations first, as if capacities were uniform, and then assigns customers to
facilities according to nonuniform capacities using bipartite matching. We
observe a similar trend: WMA steadily outperforms Hilbert and WMA Naïve,
while Gurobi struggles in terms of runtime. As the problem becomes harder,
the gap between the optimal solution provided by Gurobi, and that provided
by our heuristic slightly increases in comparison to Figure 86c. The runtime
of WMA Naïve is now higher than those of Hilbert and WMA, as it becomes
harder for its greedy heuristic to find a set cover when facilities have irregular
tight capacities.

68
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

Experiments with Clustered Synthetic Data

We now turn to clustered synthetic data. Here, the α parameter no longer
corresponds to the average number of adjacent edges per node, as distances
between nodes depend on the standard deviations of Gaussian distributions.
We tune this deviation so that clusters cover the plane.

Figure 87 shows results for variable network size settings. These results
highlight the advantage of WMA further, as the differences between network
and geometric distances become more pronounced with clustered data. Hilbert
fails to spot good facility locations, as those depend on the network structure.
WMA Naïve stands as an outlier with significantly worse results. In terms of
runtime, WMA exhibits similar trends as with uniform distributions.

Figures 87a, 87b, and 87c present experiments with highly clustered points.
Figure 87a has more customers and relaxed capacity constraints. WMA pro-
vides a good tradeoff between effectiveness and efficiency, with both objective
and runtime in-between Hilbert and Gurobi. In this experiment we include
BRNN, observing that it also underperforms with clustered data; thus, we
again omit it from subsequent figures. Figure 87b depicts results for a smaller
occupancy and a smaller capacity. WMA performs more similar to Hilbert,
though still outperforming it. Figure 87c shows a different low-occupancy set-
ting. WMA and Hilbert yield smoother curves, showing a clear trend. Yet,
the problem becomes more challenging for WMA as size grows.

Figure 87d shows results for a case with 5 clusters, coming closer to a
uniform distribution, and occupancy o = 0.5. Here the clustering-based ap-
proaches perform well, with Hilbert becoming almost as good as WMA.

Now we consider the effects of varying the major problem parameters other
than network size with clustered data.

Variable number of candidate facility locations

On a clustered graph of size n = 104, we randomly pick Fp, varying its size
from 40% to 100% of all nodes. Figure 88a presents our results, using dense
customer distribution and high capacity. Gurobi failed for Fp sizes above 60%
of all nodes. Hilbert is sensitive to the size of Fp due to its clustering nature.
In contrast, both WMA variants show stable runtime and objective, with
the regular WMA achieving objective values very close to those of Gurobi.
This indicates that WMA finds good alternatives in case some nodes are not
candidate facilities, while Hilbert falters.

Tuning Customers and Facilities

Figures 88b and 88d present our results when varying the numbers of cus-
tomers and facilities, respectively. The objective increases as the number of
customers grows, but drops as the number of facilities grows, other parame-
ters being equal. Remarkably, the runtimes of the WMA variants drop with

8.7. EXPERIMENTS 69

increasing facilities as well, as they perform fewer iterations. Figure 88c scales
up the amount of customers, also allowing for multiple customers per node,
with occupancy of o = 0.1. WMA slightly outperforms Hilbert, and both are
very close to Gurobi in terms of objective. WMA Naïve shows worse results.
Gurobi fails for large numbers of customers.

Effect of Graph Density α

We now study the effect of graph density α with 5-cluster data. Figure 89a
shows the results. As α affects the average degree, the x-axis shows the mea-
sured average degree instead of α, resulting in non-equal parameter gaps.
The objective improves for WMA with larger degree, coming closer to the op-
timal solution by Gurobi and outperforming Hilbert and WMA Naïve. WMA
finds better locations as optimal facilities become available within fewer hops,
thereby simplifying the set cover sub-problem. Gurobi is surprisingly stable,
showing that a network with no throughput constraints on edges is resistant
to intermediate density increase.

(a) n - 104, m - 1000, k - 300 (b) n - 104, m - 1000, k - 100

Figure 89: Effect of Density (c=10), Capacity c (α = 1.5).

Effect of Capacity c

Last, we vary capacity values as Figure 89b shows. The capacity has little
effect on the result quality, except in the challenging case of very small capac-
ity, where the occupancy is high. This is reasonable: once a good matching
is achieved for some capacity, letting capacity grow further does not improve
the solution. Remarkably, While other algorithm have stable runtime, Gurobi
gains in efficiency as capacity grows, rendering the optimization easier.

70
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

Experiments with Real Data, Uniform Capacities

Now we turn our attention to the performance of WMA on real-world data,
using four urban road network data sets of different size. We first examine the
uniform capacity case with Fp = V . We distributed 512 customers randomly
in each city network, and tasked the algorithms with placing 51 facilities. We
could only obtain results for WMA and Hilbert, as Gurobi did not terminate
on such data within one week due to the large number of candidate facility
locations.

Table 84 presents quality and runtime results. WMA achieves a solution
that is around 30% better than the most competitive Hilbert basline on all
cities except Las Vegas. Las Vegas has a regular grid-like road network struc-
ture (see Figure 81a), rendering clustering approaches more effective; thus, we
obtain only a 9% improvement.

BRNN Hilbert WMA Naïve WMA
Aalborg 3.51 / 1 min 0.59 / 10 s 0.83 / 5 min 0.41 / 5 min

Riga 6.02 / 6 min 1.30 / 5 min 1.86 / 3.0 h 0.90 / 3.3 h
Copenhagen 4.20 / 6 min 0.93 / 5 min 1.29 / 3.7 h 0.66 / 5.9 h
Las Vegas 3.67 / 6 min 1.16 / 13 min 1.63 / 12.4 h 1.06 / 7.5 h

Table 84: Objective [·106] / Runtime, m - 512, k - 51, c - 20, l - n

Further, we test the scalability of WMA on the Aalborg network, for grow-
ing number of both customers and facilities, with fixed occupancy o = 0.5,
c = 20, and setting k = 0.1m. Figure 810 shows that the advantage of WMA
manifests itself as the numbers of facilities and customers grow: its runtime
is aligned with that of Hilbert, and it scales well with the problem size, while
the quality improves continuously over that of Hilbert. WMA Naïve achieves
a worse objective than WMA, although it is competitive in terms of runtime.
Interestingly, as both WMA variants struggle to find a feasible set cover with
sparse customers and facilities, their runtimes are at their lowest in middle
problem sizes. Further, we ran BRNN on this real-world data set in order to
reexamine the conclusions reached on synthetic data. The objective of BRNN
grows rapidly, indicating its instability on real-world tasks. In addition, BRNN
presents the worst runtime behavior, as it has to repeatedly calculate NLR
intersections. Last, Gurobi failed in these experiments.

Experiments with Real Data, Nonuniform Capacities

We now consider real-world data with nonuniform capacities and ℓ < n, which
corresponds to the most general case of the MCFS problem. The problem
is to select a set of facilities among diverse options, each associated with a
capacity derived from real-world constraints. We study two applications: (i)

8.7. EXPERIMENTS 71

Figure 810: Aalborg experiment, o = 0.5, ℓ = n = 50961

the selection of meeting places for coworkers, and (ii) the selection of bike
docking stations.

Coworking

This trend allows independent professionals to share a working environment
[93], saving expenses for office rental while enjoying the advantages of the
structure and community of working with others [195]. In addition, cowork-
ing spaces enable group meet-ups and other temporary activities. Cafés and
restaurants provide affordable coworking options, offering part of their spaces
during non-rush hours. We let city amenities serve as facilities, while their
daily operational hours define their nonuniform capacities. Assuming uniform
utilization during these working hours, a number of coworkers need to select
coworking facilities out of potential options. We consider this problem on data
from two cities: Las Vegas and Copenhagen.

Las Vegas case We use Yelp2 data to generate a distribution of customers
from known facility occupancy, using an existing technique [282]; we divide
space to Voronoi cells, and each cell to triangles, as illustrated on the Fig-
ure 811.

Figure 811: Voronoi cell division.

The number of customers in a triangle is:

m∆ = Oi ·
(

ω · Oj∑
j

Oj
+ (1− ω) · Area∆

Area∪∆

)
2https://www.yelp.com/dataset/

72
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

where Oi is the occupancy of the central node, Oj is the occupancy of a
neighbor node, Area∆ is the area of a triangle, Area∪∆ is the area of the
Voronoi cell, and ω is a parameter set to 0.5 by default [282]. We use user
check-ins available from Yelp, considering all restaurants as candidate facility
locations, and derive a customer distribution. Instead of using Euclidean
Voronoi cells, we adapt the approach to road networks via network distance
calculations. We then generate customer numbers proportional to derived
values. We place 1,000 customers at appropriate road network nodes using
this method. We downloaded the road map data from OpenStreetMap, and
we identified 4089 venues with available operational hours in the Yelp dataset.
Figure 81a shows the distribution of customers and facilities in the city center.

Copenhagen case We use data from the “Open Data København” por-
tal3. We generate a customer distribution proportional to that of district
populations in Copenhagen, and randomly place 200 customers at road net-
work nodes. We obtained information about cafés and restaurants from Open-
StreetMap; 164 venues have operational hours available (the average is 9 hours
in both cities), which we use as a proxy for a venue’s capacity. Figure 81b
shows the distribution of customers and facilities in the city center.

We solve the problem in two ways: (i) the Direct solution, whereby WMA
accommodates the given nonuniform capacities and proceeds as usual; and
(ii) the Uniform First (UF) solution, where we first solve the problem as if
capacities were uniform using the average capacity, and then reassign cus-
tomers to facilities using the real nonuniform capacities in a single bipartite
matching step. This alternative might represent a better heuristic, in case it
detects better locations under uniform capacities, before specializing to the
nonuniform ones; this is a conjecture worth investigating.

Figures 812a and 813a show our results on the Direct and UF versions of
WMA, the optimal solution provided by Gurobi, and the three baselines —
Hilbert, BRNN, and WMA Naïve. Since WMA Naïve yields poor quality vs.
WMA, we do not include results for its UF variant for the sake of readabil-
ity. As more facilities can be used to satisfy the given demand, the problem
becomes easier. Since we use a small Fp, Gurobi solves the problem in rea-
sonable runtime; that would not be so if we had more candidate facilities or a
country-scale network. For both cities, WMA outperforms Gurobi’s runtime
by several order of magnitude and matches its quality. UF WMA meets the
optimal solution as well in most cases. The accuracy of Hilbert improves with
increasing number of facilities, replicating the trend observed with synthetic
data (Figure 88d). WMA Naïve shows a better objective than Hilbert, as
also witnessed in Figure 88a: Hilbert cannot adapt to a small Fp, leading to
objectives as bad as BRNN; BRNN has even worse runtime than Gurobi in
the Copenhagen case.

3http://data.kk.dk/

8.7. EXPERIMENTS 73

(a) Selection of meeting places (b) WMA Profiling

Figure 812: Las Vegas experiments.

(a) Selection of meeting places (b) Bike docking case study

Figure 813: Copenhagen experiments.

We also report statistics on the operation of WMA for selection of meeting
places in the Las Vegas network with k = 600. Figure 812b shows 3 quantities:
covered customers at the end of each iteration, time for matching, and time for
the set-cover operation. The set-cover time is lower than the matching time
except for later iterations where reassignment is minimal. Most customers get
covered within the first few iterations. The matching time in the first iteration,
where WMA performs a matching of all nodes, is one order of magnitude larger

74
CHAPTER 8. MULTICAPACITY FACILITY SELECTION IN

NETWORKS

than in subsequent ones, where it just updates nodes affected by increased
demands. The growing number of covered nodes shows how WMA explores
the network.

Dockless Bike Sharing

In our second use case, a customer can leave a bike at any place after using
it, instead of placing it at predefined docking stations. The rapid growth of
companies such as Mobike4, oBike5, and Ofo6 illustrates the popularity of this
business model. Still, these companies suggest using “preferable” bike docking
stations. Periodically, a service gathers dispersed bikes and distributes them
to such stations to enhance the ease of access to bikes. We study the case
of dockless bike sharing in Copenhagen, using data from the “Open Data
København” portal again. We determine the locations of 6,000 bike docking
stations and their capacities (shown in Figure 814). We assume that a new
bike sharing company may be licensed a subset of available stations. Our
task is to select an appropriate set of k bike docking stations (i.e., facilities),
observing capacities.

Figure 814: Existing bike docking stations

We generate a distribution of scattered bikes (i.e., customers) using ag-
gregate daily bike traffic counter data. A bike traffic counter is a point with
known coordinates that records the number of bikes passing by in each street
direction per hour. Given this information and the default street directions
provided by OpenStreetMap, we derive a vector function of bike flow per hour,
g⃗. Figure 815 shows the color-encoded magnitude and sign of g⃗, where the
sign indicates the direction of the flow with respect to default street direc-
tions. We calculate the divergence ∇g⃗ = ∂gx

∂x + ∂gy

∂y at each network node,
4https://mobike.com/
5https://www.o.bike/
6http://www.ofo.so/

8.8. CONCLUSION 75

Figure 815: Copenhagen bike traffic

which expresses the number of bikes that get parked at that node during an
hour. We repeat this operation for each hour in a day and obtain the variance
of ∇g⃗ across hours at each node, which is a proxy for bike docking demand
at that node. Normalizing these variance values, we obtain a probabilistic
distribution of bike docking demand across nodes. We place 1000 bikes in the
city following this distribution.

Figure 813b presents the results on bike docking station selection. UF
WMA fares slightly worse than WMA, while both outperform the baselines
and almost match Gurobi.

8.8 Conclusion
We introduced the problem of Multicapacity Facility Selection in a network
and presented the first, to our knowledge, algorithm that offers solutions of
high quality and scales to large problem instances, the Wide Matching Al-
gorithm (WMA). WMA iteratively builds careful, expanding allocations of
customers to usable candidate facilities and terminates when it detects a fea-
sible solution within those allocations. As it can handle both uniform and
nonuniform capacities, WMA provides a viable solution for selecting facili-
ties under any capacity constraints. Experiments on synthetic and real-world
data demonstrate that WMA is able to solve realistic problem instances; scales
gracefully with network size, supply, and demand; outperforms simple base-
lines in solution quality; and offers competitive quality with respect to the
optimal solution.

Chapter 9

Fair Cruising

Ride-hailing systems operate in a two-sided market between passengers and
drivers. Such systems manage a fleet of vehicles via two critical operations on
the drivers’ side: the selection of a route to take when not serving a passenger,
or cruising, and the assignment of a customer to a driver, or dispatching, and
thereby affect the market equilibrium. The quality of fleet management has
been extensively studied with respect to collective profit on the drivers’ side,
and satisfaction on the passengers’ side, yet less with respect to the satisfaction
of drivers.

In this chapter, we propose a maximim criterion of fleet management qual-
ity that expresses the fairness among drivers, with a focus on cruising deci-
sions. We find that state-of-the-art cruising solutions based on Reinforcement
Learning perform poorly in terms of his fairness objective compared to simple
baselines. We adapt these methods based on an enhanced description of the
environmental state, and suggest a fairness-oriented combination of cruising
and dispatching decisions. Our results show that this adaptation achieves
better fairness than state-of-the-art techniques on real-world and synthetic
data.

The content of this chapter was submitted to the ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining 2020 [176], in co-authorship
with Leong Hou U and Panagiotis Karras.

9.1 Introduction

Fleet management. Ride hailing systems rely on global positioning tech-
nologies to provide fine-grained real-time decision-making and service manage-
ment [132, 263]. Such service manages a large fleet in a manner that tailors
the distribution of available vehicles in a city to everyday demand patterns.
Recent studies formulate this fleet management problem with an optimization
objective to maximize total revenue [119, 133, 167, 295]. Two decision-making
tasks enter the problem: dispatching or matching of orders to customers and

77

78 CHAPTER 9. FAIR CRUISING

positioning or cruising of vehicles [133]. Some works consider these two tasks
jointly [119, 133, 295]. Yet such joint consideration applies only to environ-
ments where matching decisions are centralized.

Cruising. While matching decisions require the consultation of some
central authority to avoid conflicts, the cruising side of the problem may be
addressed as a problem in its own right [49, 167, 202, 209, 219]. For instance,
in cities like New York, street hailing is the dominant income source for taxi
drivers and therefore each driver mainly has a cruising problem to solve [289];
likewise, in ride-hailing services with a Grab Single mode, passengers’ requests
are sent to multiple drivers, hence again each driver needs to adopt a lucrative
cruising strategy [70]. The choice of cruising strategy is arguably one of the
primary causes of income differentiation among drivers, as more experienced
drivers can earn up to four times more than beginners [202].

This introduces the practical problem of Fair Cruising (FC) problem,
where the goal is to achieve the satisfaction of all drivers as users of a ride-
hailing system. This objective is to be achieved by recommending cruising
routes to a set of drivers in a manner that maximizes the minimum income
among drivers. We find that state-of-the-art profit-maximization strategies do
not lead to fair cruising outcomes. We propose algorithms that lead to such a
fair outcome, and we show that fairness can be achieved with either minimal
concessions or even no concessions at all in terms of total profit.

9.2 Background
Here, we review three areas of research that relate to this work. First, in Sec-
tion 9.2, we discuss existing works on fair fleet management. In Section 9.2 we
examine the state-of-the-art applications of reinforcement learning for profit
maximization in fleet management. Last, in Section 9.2 we discuss the general
area of fairness in resource allocation.

Fair Fleet Management

Fairness in the context of ride-hailing services has been investigated mainly in
the sense of fairness as non-discrimination among customers with respect to
the service provided [88, 150, 192], the efficiency of recommended routes [211],
and pricing [181]. The concept of fairness among drivers was first studied
in [212]; this study drew attention to the problem of income inequality among
drivers, and concluded that the four most significant factors leading to such
inequality are the supply-demand ratio, the search distance, the fare, and the
speed of delivery. Focusing on a single factor alone, such as operation in a high
demand area, or taking long rides, does not guarantee a high income [212].
A similar conclusion arises from a study of income inequality among drivers
based on the New York taxi logs [35]; simulations based on the nearest-first and
the poorest-first matching strategies indicates that the matching strategy, the

9.2. BACKGROUND 79

supply-to-demand ratio, and the spatial distribution of trip requests greatly
influence driver income inequality. In addition, a cruising strategy by which
drivers return to the city center after each trip leads to greater income variance
than a strategy by which they wait without moving until the next customer
appears; we will include such strategies in our study, among others. However,
these works [35, 212] do not propose any method to improve the fairness.

In another direction, Chaudhari et al. [49] consider the problem of robust
revenue maximization, which is to maximize the minimum revenue of a single
driver over all possible trip requests. A stochastic transition matrix represents
possible driver actions, including “going to work” and “going home”, which
define one’s working hours. The same work studies the effect of dynamic pric-
ing on the driver’s revenue; while a common practice for ride-hailing services
is to increase the price during peak hours so as to boost supply, it turns out
that such surge pricing is misleading; strategic cruising remains the key to
maximizing a driver’s income.

Some works study the fairness of dispatching among drivers. Dai et al. [70]
propose poorest-first driver assignment, under the conditions of positive travel
cost and fine-grained driver routing. Sühr et al. [243] define fairness as the
approximate equality of the revenue of all drivers, taking into consideration
waiting times of customers. They propose a Linear Integer Program with a
tradeoff parameter that controls inequality levels for drivers and customers.
Lesmana et al. [159] provide another tradeoff-based assignment algorithm that
juxtaposes the minimum income among drivers with the sum of their incomes.
The algorithm repeatedly reassigns the drivers beyond a fairness threshold and
find an optimal threshold via binary search. However, the aforementioned
works do not consider fairness in cruising. Idle drivers that are not matched
to any customer remain at the same location. As we will see, this strategy
leads to poor fairness and also reduces total income.

Ride Hailing as a Markov Decision Process

A common approach to fleet management models the system as a Markov
Decision Process (MDP) [202, 219, 253, 283]. Each driver is an agent equipped
with a set of possible actions. The planning horizon consists of a finite set of
discrete time steps. Actors operate in an environment with a set of states. A
transition from one state of another elicits a reward. The goal is to find a policy
that returns the next action as a function of the state of the environment. The
optimal policy maximizes the sum of rewards.

The principal approach for policy optimization in Operations Research lit-
erature is Dynamic Programming (DP) [219, 253]; the optimization is centered
on a state-value function Q, which maps states to expected future on-policy
rewards. DP requires a perfect model of the environment and therefore suffers
from the curse of dimensionality: the space of possible actions and states is
exponentially large for many real-world problems, especially in a multi-agent

80 CHAPTER 9. FAIR CRUISING

setting. Godfrey et al. [98] apply an Adaptive Dynamic Programming (ADP)
approach, which achieves scalability by approximating the dynamics of a sys-
tem by linear functions, to the problem of stochastic fleet management; how-
ever, this approach is inapplicable in settings where taxi dispatching is allowed
to nearby spatial cells [167]. Guestrin et al. [106] represent Multi-agent MDPs
as a Dynamic Bayesian network, approximate the value function as a weighted
sum of factored linear value functions, which allows for a solution by Linear
Programming. The approach, factored MDP, has gained popularity due to its
scalability in comparison to DP solutions. It has been applied for fair policy
optimization, where fairness is expressed as a Nash Equilibrium [285].

Lin et al. [167] show that Deep Reinforcement Learning (DRL) outper-
forms DP approaches in revenue maximization by cruising, which trains policy
and value functions using the Advantage-Actor-Critic (A2C) algorithm; unlike
the fully-cooperative setting, which optimizes central revenue, A2C optimizes
the policy for each agent independently; cooperation between agents occurs
via an additional constraint, context, which forces a driver to accept a desti-
nation of lower value. This contextual A2C outperforms other solutions for
revenue maximization; we use this algorithm as a baseline in our experiments,
and discuss its details in Section 9.5.

Jin et al. [133] propose a partially cooperative approach, in which separate
modules are responsible for micro and macro management of taxis. The model
architecture groups spatial cells into hierarchically ordered regions. Yet this
solution cannot address cruising as a stand-alone problem in its own right. It
simply considers cruising actions as orders with a negative cost. Contrariwise,
we are interested in cruising as a problem in its own right, coupled with any
dispatching strategy.

Zhou et al. [295] propose a method that embeds a minimization of the
Kullback-Leibler (KL) divergence between distributions of customers and cars
into the revenue maximization objective. A similar technique is utilized in the
Proximal Policy Optimization (PPO) algorithm, a state-of-the-art RL algo-
rithm. Like A2C, PPO is a policy gradient method, but with an additional
penalization of policy updates at the learning stage. Holler et al. [119] apply
PPO to the joint problem of cruising and dispatching. They compare system-
centric and driver-centric reward optimization, where the system-centric case
implies a fully-cooperative setting, and driver-centric is partially-cooperative,
as in [167]; this algorithm is limited to a few dozens of drivers.

Overall, fully-cooperative Multi-agent RL achieves better cooperation be-
tween agents, but scales poorly due to the credit assignment problem [167], the
problem of a small correlation between an outcome and the actions that lead
to that outcome. Fully-cooperative models are limited to a few hundreds of
drivers [196], while our dataset indicates more than a thousand active drivers
at once.

Pan et al. [202] apply Inverse Reinforcement Learning on passenger-seeking
habits of drivers to minimize an entropy measure between the observed driver

9.2. BACKGROUND 81

policy and learned MDP policy. Their examination of habit-based features
(number of trips in a cell, average trip distance, traffic, distance to train
station/airport) vs. profile-based features (visitation frequency, distance to
home, time from start to finish) reveals that experienced drivers gain higher
revenue by adapting to traffic conditions.

Fair Resource Allocation

Fairness in resource allocation depends on whether a resource can be divided,
and whether actors have individual preferences of their shares. The preference
an agent a regarding an item i is captured using a utility function ua(i). The
fair division problem for a divisible good with individual utility functions is
known as the Cake-Cutting problem [122]; fair allocation is defined in one of
two ways [215]:

• Envy-freeness: each agent prefers their own share

• Proportionality: each agent gets at least an average share

Yet in the case of indivisible resources, a fair allocation by the definitions
above may not exist [122]. Aziz et al. [15] present polynomial algorithms for
deciding on that existence. Alternative definitions include epistemic envy-
freeness, minimization of envy-ratio, minimization of a degree of envy [122],
and envy-freeness up to one good (EF1) [24].

One relaxation of the proportionality requirement to the case of indivisible
goods is the maximin fair share [23, 45]: each agent should get a share that is
at least as good as the maximum value gained by partitioning the items into
n parts and taking the part with the minimum value [24, 94].

Another maximin problem for indivisible goods is the Santa Claus problem,
where Santa needs to distribute presents so as to make the most unhappy
kid happier. Kids have preferences and may get multiple presents. Bansal et
al. [19] proposed an LP-based solution. Cheng et al. [59] focus on the restricted
case, when a good is available for a subset of agents, each having the same
valuation.

Khot et al. [140] assume the utility functions to be subadditive: ua(i1+i2) ≤
ua(i1) + ua(i2). As the arising problem is NP-hard, they propose a (2k1)-
approximation algorithm, polynomial in the number of agents and the number
of items. In a manner similar to [159], the algorithm distributes valuable items
first, then less significant items, and finally performs reassignment of items
for unsatisfied agents according to a fairness threshold estimated by binary
search. Fair division is related to job scheduling and load balancing problems,
which accept Linear Programming solutions [127]. Job scheduling algorithms
are applied to fleet management in [97], albeit without considering fairness
objectives.

82 CHAPTER 9. FAIR CRUISING

Maximin objectives also appear in the context of recommendation systems
with a minimum required fairness. Zehlike et al. [284] define group fairness as
the ratio of target group representatives in the top-k ranking, and proposed
an algorithm that maximizes the utility of top-k query results, subject to
minimum required fairness. Following this work, Lahoti et al. [153] study
the problem of maximizing individual fairness. Yet it is not clear how such
solutions targeting fairness of representation can be transferred to problems
targeting fairness of outcome, such as the problem of cruising recommendation
within fleet management, which we examine.

9.3 Problem Statement

We model the setting of our Fair Cruising problem via a Multi-agent Markov
Decision Process. Consider a planning time horizon (an episode) divided into
discrete time periods t = {0 . . . T − 1}. A city is divided into spatial cells.
Let G be a directed graph where nodes V represent the cells. Two nodes
are adjacent in G if a car can relocate from one corresponding spatial cell to
another within one time period. Traffic conditions are out of the scope of this
evidential work. We assume the speed to be equal for all the cars at all time
periods. We set one episode to one day, and one time interval to 15 minutes,
resulting in 96 periods per episode. We choose that time interval motivated
by the granularity of the real-world dataset we use in the experiments [62].

An order is a tuple ci =< vk, vl, t, ∆t, pi > with source vk, destination
vl, time period t of submitting the order, time difference ∆t required for a
driver to deliver the customer from vk to vl, and price pi for completing the
order; vk may be equal to vl. Customers are assumed to wait for a car not
longer than one time interval (15 minutes). Any unserved order is erased at
the beginning of the next time step. A driver is characterized in terms of
location and availability to pick up a passenger. At the moment of pick up,
the driver receives the corresponding revenue pi, has location set to vl, and is
considered unavailable during the next ∆t time periods.

At each time step t, available drivers are first matched with orders. Each
driver that has not been matched follows a cruising policy that determines
where they relocate at t + 1. The feasibility of relocation is determined by
the network G. We refer to a driver as an actor, and denote a state of an
environment as st. A set of actions {a} is a set of possible destination cells for
relocation, according to G. A policy is a function π : s → P[a] that provides
a probabilistic distribution over actions given a state.

The Fair Cruising problem seeks a cruising policy π that maximize the
minimum income among drivers. We evaluate policies using a stochastic en-
vironment simulator, to be described in Section 9.4.

9.4. BENCHMARK ENVIRONMENT 83

(a) Fares vs Miles (b) Top Hub Pruning

(c) Trips per driver (d) Income per year

Figure 91: Chicago Taxi Trip Data Statistics

9.4 Benchmark Environment
We use the Taxi logs from Chicago Data Portal [62]. The data includes 183M
trips from the years 2013 to 2019. One log entry represents a taxi trip with
source, destination, driver id, duration, price, and other trip information.
Figure 91c shows the total number of trips per driver over the year 2014; we
prune from consideration 800 drivers who made less than 50 trips. The trips of
the rest 3321 drivers form a bell-shaped distribution with a mean of 3200 trips
per year. Figure 91d depicts the income distribution of drivers. We selected
Jan 2014 for simulation experiments; there are 1367 active drivers during that
period.

Spatial Network

We build a grid division of the city as a network G using census tracts as
the basis for that division. Chicago has 801 administrative regions (census
tracts) [63], of 35 square miles area in average, as shown in Figure 92b. Due
to privacy concerns, the taxi logs’ smallest granularity regarding a trip source
and a destination is the id of the corresponding census tracts, and timestamps
are rounded to multiples of 15 minutes; we set the smallest time interval ∆t
to 15 minutes.

We define the distance between two adjacent cells as the shortest path
length between the nodes in the road network that are the closest to the
geometric centroids of the cells. The road network has 474657 nodes. The

84 CHAPTER 9. FAIR CRUISING

(a) Trip Intensity (b) Census Tracts [63]

Figure 92: Chicago Taxi Trips

average distance between all pairs of cells is 10.0 ± 5.5 miles. According to
the log of orders, the average speed is 14.3 ± 8.3 miles/h. As discussed, we
assume vehicles are moving with the average speed, therefore any car can
travel 3.6 miles in 15 minutes. Based on that, we build the network G, where
all cells with a distance up to 3.6 miles are connected with an edge. Figures 93a
and 93b present examples of nodes and their incident edges in G. Dots indicate
spatial cell centroids. The maximum degree in G is 182. We note that not all
the geographically close cells are connected, since some neighboring cells may
not have direct road connections. Figure 95b shows the resulting graph G,
plotted using the Force Atlas algorithm [25], ignoring the spatial coordinates
of nodes. The nodes appear close in the picture to the extent that their
neighbors are densely interconnected. Darker nodes indicate a higher degree.
We observe that the city’s road network forms two dense regions with a sparser
part between them. An average trip length that is equal to 13 minutes; 82% of
trips do only one hop. Given the average cell area and the average trip length,
we derive the average car speed as around 6 miles per hour. We remove records
with missing information about source and destination. We consider only the
year 2014, as it has the largest number of records (19M).

Figure 91a shows the distribution of the taxi fares versus traveled distance
for a sample of 105 trips in the logs; we remove toll payments from consider-
ation. Based on the distribution, we remove trips with fare equal to 0$ and
larger than 50$, as outliers. Similarly, we disregard trips with the traveled
distance of 0 or more than 25 miles. The distribution shows that most trips
follow a fare rate of approximately 2$ per mile; 13.7% of trips have a rate
of over 16$ per mile (the two bottom lines in the figure), with O’Hare Inter-
national Airport as source or destination. Less than 0.02% of trips have a
rate less than 0.5$ per mile, and appear as a sparse group of points with a

9.4. BENCHMARK ENVIRONMENT 85

(a) Dense Chicago (b) Sparse Chicago (c) Regular Grid

Figure 93: Examples of connections

large slope. Such trips have higher average speed, which indicates that a taxi
followed a highway, while the fare involved a combination of both distance
and time. In our simulations, we use the original trip fares.

We also calculate the frequency of trips between census tracts. Out of 642K
(ordered) pairs of census tracts, only 55308 have at least one trip (8.6%), 23856
pairs have at least 10 trips per year, and 72.6% of trips are between just 1000
pairs of census tracts. Those 1000 pairs contain only 83 unique census tracts as
source or destination. We infer that the city has highly active taxi hubs (hubs)
represented by a few census tracts, and the rest are passive neighborhoods
(neighs). All trips are distributed as follows: 3% neigh→hub, 6% hub→neigh,
89% hub→hub, 2% neigh→neigh; most trips are densely concentrated in a
single city center.

Figure 94 illustrates the daily activity of cells as sources of trips; in par-
ticular, Figure 94a shows how many trips fall in each time period of the day,
accumulated over a year, while Figure 94b shows activity per each cell sepa-
rately, for cells with more than 1000 trips per year. Intra-cell peaks of activity
differ across cells, but this difference is small compared to the overall inter-cell
difference of activity. Overall, peak hours are between 7 pm and 8 pm.

(a) Total daily trip activity (b) Activity per hour

Figure 94: Daily activity of Demand

86 CHAPTER 9. FAIR CRUISING

Simulator

We train and evaluate algorithms using a taxi trip simulator, which acts on
the city network, described in Section 9.4, and a pool of orders collected over a
month. One epoch of the simulator is equal to one day. For each time interval
of 15 minutes, the simulator samples orders that appeared in the same period
of the day. Initial driver locations are set to the locations where each driver
took their first order according to real-world order logs. A driver may take
an order in the cell where they are, or a neighbor cell. The driver becomes
available for new orders at the destination of the passenger after the time
length required for delivery. Cars perform one hop per iteration. Delivery
within the same cell takes 1 time interval. Network links correspond to 15-
minute trips over a road network at the derived average speed of 6 miles per
hour.

We dispatch drivers as follows. In each node, we first match idle drivers
with orders in the same node, then with orders in neighbor nodes, processing
nodes in random order. In case the number of drivers exceeds the number
of customers, we consider two assignment strategies: we distribute orders
among all candidates either uniformly at random (the random assignment),
or randomly among the k poorest drivers, where k is the number of available
orders (the poorest-first assignment).

For instance, consider a city with two cells, A and B. A has 2 drivers
and 1 order, while B has 1 driver and 1 order. Let t = 0. The algorithm
picks a cell at random, say B, and matches the driver in B with the order in
the same cell. Since there are no idle drivers or unserviced customers, we do
not recommend cruising and do not match with neighbor cells. The algorithm
proceeds with the next cell, keeping t = 0. There, it matches one of the drivers
with the order, by either the random or the poorest-first strategy. The other
driver does not have a match, so the algorithm recommends a cell to travel
to by the cruising policy. The state of the cell contains the updated car and
order distribution, i.e. (2, 0) for drivers, and (1, 0) for orders. Once the next
cell is recommended, the idle driver is set offline (not available) until t = 1,
and t is incremented.

At the beginning of each time interval, we sample orders randomly from
taxi logs of 30 days, using sampling rate α; α = 1 represents the case where the
number of sampled orders per time interval is equal to the average number
in that time interval over a month. For example, at t = 0, the simulator
creates n orders, randomly sampled from a set Ω, which contains all orders
that appeared in the time window between 00:00 and 00:15 during the first 30
days of 2014, with n = α · |Ω|/30.

9.5 Solutions
We discuss the range of solutions we apply.

9.5. SOLUTIONS 87

(a) Uniform Supply (b) The graph G

Figure 95: Chicago Maps

Naïve Baselines

We use three naïve solutions. NoPolicy forces an idle driver to stay in a node
until the next assigned order. Diffusion selects the next node for an idle
driver uniformly at random among all adjacent nodes, including one’s current
node. 2Hub sends an idle driver to the nearest hub. We define a node as a
hub if the number of trips having the node as a source is above a threshold.
Figure 91b illustrates the distribution of trip frequencies in year 2014, with
a threshold of 104, which results in 31 hubs. Figure 92a shows spatial cells
coloured according to the number of trips.

cA2C and cA2Cm

Actor-Critic is a family of gradient descent methods used in Reinforcement
Learning. Regular Actor-Critic architecture uses a probabilistic policy that
maps a state of the environment to a probability distribution over actions:

π : s→ P[a] ∀a

The policy is usually parameterized by a neural network with weights θ up-
dated according to the policy gradient

θ ← θ +∇θJ(θ)

which is equal to

∇θJ(θ) = Eτ [
T −1∑
t=0
∇θ log πθ(st, at)A(st, at)] (9.1)

88 CHAPTER 9. FAIR CRUISING

Here, Eτ is an expectation over possible trajectories τ , i.e. possible sequence of
actions following the probabilistic policy πθ. A(s, a) is an advantage function
showing how much better a is than an average action given state s. The
advantage depends on the reward from the environment rt+1, and a value
function V (s) that shows the future profitability of the state s:

A(s, a) = rt+1 + γV (st+1)− V (st) (9.2)

γ is a discount factor that limits the planning time horizon. We set γ = 0.9
at all times.

The value function V (st, at) is also parametrized by a neural network with
weights θ′, trained by minimizing a loss function derived from the Bellman
Equation:

L(θ′) =
(

V (st)−
∑

a

π(st, a)(rt+1 + γV (st+1))
)2

(9.3)

The method’s name comes from an abstraction of the actor that chooses an
action based on a parametrized policy, and the critic that learns the value
function, which is used by the actor to update the parametrization of the
policy.

Contextual Advantage-Actor-Critic (cA2C) method, proposed by Lin et
al. [167], is a variation of A2C, adapted to the cruising problem by mask-
ing feasible actions of the policy. The probability of infeasible actions in
the output of the actor’s policy network is set to 0. An action is feasible if
V (st+1) > V (st). For total revenue maximization, this helps to eliminate re-
dundant travels, since swapping cars between cells does not have any effect on
the objective. However, that is not the case with a fairness objective, where
individual income matters, hence swapping cars may be beneficial, if, for ex-
ample, a poorer car relocates to a more profitable cell. Lin et al. [167] use a
3-layer ReLU network architecture for both actor and critic, with sizes of 128,
64, and 32 nodes, and the standard Adam optimization algorithm for network
training, with learning rate 1e− 3.

Both the policy network and the state-value network are shared for all
agents. The state of an agent is defined by the concatenated vectors of the
driver distribution over cells, the order distribution, and the one-hot encoding
of a time period and the agent’s location. State vector is normalized. Agents
located in the same cell are considered homogeneous. This definition of a
multi-agent system is different from a fully-cooperative multi-agent system,
where all agents have a global objective. cA2C implies that global revenue
maximization is achieved by independently maximizing individual revenues of
agents, connected only through the context (action masking), and including
a driver distribution in the state. Empirically [167], cA2C performs better if
the reward from the environment earned by the agents is averaged over all
agents within same cell.

9.5. SOLUTIONS 89

Figure 96: Framework diagram

A technique called experience replay applies. Experience of transitions
and rewards collected over episodes is stored in a memory, and then a policy
is updated by sampling batches from the memory. This technique is more
stable and sample-efficient than regular A2C, as it removes correlations in the
observation sequence and smooths changes in the data distribution [189]. We
set a batch size of 3000 in our experiments, as in [167].

Unlike Lin et al. [167], we use a graph representation of the spatial grid.
We define an action space of size equal to the maximum degree in G plus
1. The last action corresponds to staying in the same cell. For each node,
we define an order over incident edges. A vector of output logits of a policy
network contains the ordered neighbours of a node. In case the degree of a
node is smaller than the maximum degree in G, extra logits are masked as
infeasible.

We adapt cA2C to the fair objective by including the driver revenue into a
set of features considered by the policy function. Instead of averaging income
per cell, we define reward as the minimum income among drivers in a cell. In
addition, we redefine state to include the driver accumulated revenue. Along
with the distributions of drivers over the cells and distribution of orders, we
include distributions of minimum, maximum and average revenues. All rev-
enue values are normalized by the passed time stamps, and by the largest
possible difference between the poorest and richest drivers:

income = income

t · (pmax − ρ)

90 CHAPTER 9. FAIR CRUISING

Here, ρ is a cost of cruising, and pmax is the largest price among all orders
in the dataset. ρ is estimated by the average fuel consumption 1. Figure 96
illustrates the framework. We refer to our solution as cA2Cm.

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an advanced policy gradient method,
that outperforms A2C on a large collection of single-agent benchmark tasks [231].
PPO has the actor-critic architecture, but, unlike A2C, uses the Kullback-
Leibler divergence penalty of policy parameters, improving data efficiency and
robustness.

We apply single-agent PPO to the multi-agent setting by recommending
cruising for each cell sequentially, in a random order. We update the distri-
bution of cars and orders after processing each cell. As in cA2Cm, a state of
an agent consists of the current distribution of cars, orders, and an one-hot
encoding of time period and cell id. An action is masked by a set of feasi-
ble relocations, yet relocations are not restricted to the cells of a larger state
value. The sequential consideration of cells allows to apply PPO implementa-
tion out-of-the-box with existing RL frameworks, such as OpenAI Gym [42]
and Stable Baselines [117].

9.6 Experiments
We conduct 3 types of experiments:

• Synthetic network and synthetic orders. We test two simple regular grids
with different order patterns.

• Real-world network and real-world orders. We build G based on the
Chicago road network, and use the Chicago taxi orders log to simulate
the environment.

• Real-world network and remapped orders. We use the Chicago road
network and taxi logs, but we redistribute the orders so that the overall
workload is preserved, but the city has multiple active hubs.

The code of the experimental framework is available online2.

Synthetic Grid

We start by testing the algorithms in the artificial environments with simple
regular patterns. First, we generate a regular 10× 10 grid with diagonal con-
nections (Figure 93c), and set T = 20 time periods per episode. The grid

1https://www.fueleconomy.gov/
2https://github.com/allogn/fair-taxi-cruising

https://www.fueleconomy.gov/
https://github.com/allogn/fair-taxi-cruising

9.6. EXPERIMENTS 91

Algorithm Minimal Income Total Income [·104] ORR
Regular grid

NoPolicy 0± 0 1.76± 0.01 0.85
Diffusion 6± 2 1.85± 0.01 0.90

2Hub 0± 0 1.46± 0.02 0.75
cA2C 1± 1 1.73± 0.03 0.88

cA2Cm 0± 0 1.67± 0.02 0.83
PPO 8± 2 1.81± 0.01 0.88

Airport
NoPolicy 0± 0 0.33± 0.02 0.02
Diffusion 0± 0 1.20± 0.09 0.08

2Hub 11± 2 7.12± 0.07 0.27
cA2C 0± 0 1.58± 0.03 0.09

cA2Cm 0± 0 1.51± 0.04 0.06
PPO 0± 0 0.73± 0.08 0.09

Table 91: Results in synthetic grid

corresponds to the regular hexagonal space division used by Lin et al. [167].
Orders are generated randomly with the density proportional to the proxim-
ity to the central node of the grid. The price is equal to the number of hops
between a source and a destination. Figure 97a show the result of the exper-
iment. Since each cell has non-zero order frequency, Diffusion outperforms
other solutions in terms of the total income. PPO is the most successful out
of the neural network based solution in capturing the simple pattern, and has
a slightly larger minimum income than Diffusion.

Another result on a simple pattern is presented in Figure 97b. Here, we
simulate the existence of two distinctive hubs – a city center and an airport.
We use the same regular grid, and we set the positive order rate only for
the top-left and the bottom-right corners of the grid. A destination is picked
uniformly in random over the grid. The price for the orders originating in
the top corner has a multiplier of 10, i.e. 10 times more profitable than from
the bottom corner. Although such a setting should illustrate the difference
between fair and unfair solutions, we see on the figure that none of the solutions
utilize fairness and can achieve non-zero minimal income, except 2Hub, which
strongly dominates in both objectives. Table 91 shows the numerical values
for Minimal Income, Total Income and Order Response Rate (ORR) in both
experiments with the synthetic data.

Chicago Grid

In this section, we present results for the Chicago-based G and the taxi logs.
Trips fares correspond to the logs and are measured in dollars. Figure 99
depicts the Fair and the Total Income objectives. 2Hub maximizes the total
income, while NoPolicy shows the worst performance. In terms of the fair

92 CHAPTER 9. FAIR CRUISING

(a) Regular Grid (b) Airport

Figure 97: Results on synthetic grid

income (Figure 99a), cA2Cm has a significant advantage over 2Hub, while all
other solvers have zero objective and are omitted from the plot.

Figure 98a shows that despite the advantage of cA2C over others, the
improvement in the reward rt throughout training episodes improves only
slightly, and with significant variance. This illustrates the difficulty of the
training on the fair objective. Figure 98b shows the improvement of ORR
over training episodes. We can see, that ORR reaches a high value of 0.974
right after the first training episode. Then, a slight improvement follows after
the second episode, and the metric remains static for the rest of the training.

(a) Reward of the environment (b) Order Response Rate

Figure 98: Solution quality per training episode, cA2Cm

Chicago Uniform Grid

As shown in Figure 92a, hubs of order activity are densely concentrated in the
center of Chicago, leaving most of the city inactive. Such setting makes the
2Hub strategy profitable, and the fair strategy easy-to-learn. In this section,
we test a more complex scenario, when a city exposes several spatially dis-
tributed hubs. Such setting would require more complex cooperation among
agents. We simulate the scenario using the same Chicago road map and taxi

9.6. EXPERIMENTS 93

Algorithm Minimal Income Total Income [·106] ORR
NoPolicy 0± 0 3.04± 0.02 0.94
Diffusion 31± 65 3.22± 0.01 1.00

2Hub 0± 0 2.67± 0.03 0.83
cA2C 0± 0 3.22± 0.01 1.00

cA2Cm 0± 0 3.22± 0.01 0.99
PPO 38± 58 3.22± 0.01 1.00

Table 92: Chicago Uniform with random matching

logs. However, instead of using the original source and destination of the logs,
we remap node ids consistently over the log, so that activity hubs are uni-
formly distributed around the city. We refer to this case as Chicago Uniform.
Figure 95a shows the resulting activity pattern.

Table 92 shows Minimal Income, Total Income and ORR of the complete
set of drivers in Chicago with random assignment. Due to the high connectiv-
ity of the network and an excessive number of drivers, ORR is very close to 1
for all solutions. 2Hub has the lowest ORR and Total Income, due to the high
conflicts between drivers. Figure 910 visualizes the total and minimal income
of drivers for all tables with non-zero minimal income.

(a) Fair Income (b) Total Income
Figure 99: Results with Chicago Real Order Distribution

Figure 910b shows the case of the poorest-first assignment. Total income
does not change significantly, while Minimal Income improves for all neural-
network-based solutions. All experiments hereafter have this type of assign-
ment. in Figure 910d we increase the sampling rate per time period twice.
ORR drops, and two other measures increase. cA2Cm has the lead in mini-
mal and total income. In contrast, the total income drops for twice decreased
order sampling rate, as seen on 910e. The Minimal Income in this case is zero
for all solvers. Table 93 summarizes the numerical results.

Table 94 summarizes the two cases of non-zero travel cost, where the cost
is equal to 0.3 per hop. Figure 910c shows the case of the regular sampling
rate, and Figure 910f represents the case where the sampling rate of orders is

94 CHAPTER 9. FAIR CRUISING

Algorithm Minimal Income Total Income [·106] ORR
Regular orders

NoPolicy 0± 0 3.04± 0.02 0.94
Diffusion 19± 31 3.22± 0.01 1.00

2Hub 0± 0 2.68± 0.02 0.82
cA2C 267± 161 3.22± 0.01 1.00

cA2Cm 392± 131 3.20± 0.01 0.99
PPO 262± 129 3.22± 0.01 1.00

Dense orders
NoPolicy 0± 0 6.24± 0.05 0.89
Diffusion 567± 263 6.80± 0.02 0.97

2Hub 0± 0 5.55± 0.05 0.80
cA2C 902± 447 6.82± 0.02 0.97

cA2Cm 971± 461 6.83± 0.02 0.98
PPO 864± 486 6.81± 0.02 0.97

Sparse orders
NoPolicy 0± 0 1.39± 0.01 0.97
Diffusion 0± 0 1.41± 0.01 0.99

2Hub 0± 0 1.19± 0.01 0.79
cA2C 0± 0 1.41± 0.00 0.99

cA2Cm 0± 0 1.41± 0.00 0.99
PPO 0± 0 1.41± 0.01 0.99

Sparse drivers
NoPolicy 2194± 1529 1.39± 0.02 0.50
Diffusion 4632± 2259 1.49± 0.01 0.55

2Hub 58± 163 1.28± 0.03 0.48
cA2C 4332± 2216 1.49± 0.02 0.56

cA2Cm 5216± 1918 1.49± 0.01 0.57
PPO 4560± 2123 1.48± 0.01 0.56

Table 93: Chicago Uniform with poorest-first matching

increased twice. PPO shows the best Minimal Income for the regular sampling
rate, while cA2Cm takes back the lead when the number of orders is increased.

We test solvers under the constraint when a driver can match with cus-
tomers in the same cell. Table 95 shows the result. With such constraint,
Minimal Income is zero for all solutions. In terms of Total Income, Diffusion
is surprisingly slightly better than others.

In order to test the use case with small ORR, we keep the sampling rate
of orders to 1, while decreasing the number of drivers in the city to 10% out
of the total amount. Figure 910e show the result. cA2Cm holds the lead in
both Minimal Income and Total Income objectives. A notable result is that
Minimal Income is much larger in comparison to other use cases.

9.6. EXPERIMENTS 95

Algorithm Minimal Income Total Income [·106] ORR
Regular orders

NoPolicy −29± 0 3.01± 0.02 0.94
Diffusion 2± 54 3.18± 0.01 1.00

2Hub −29± 0 2.65± 0.02 0.83
cA2C 201± 152 3.19± 0.01 1.00

cA2Cm 175± 117 3.18± 0.01 1.00
PPO 290± 155 3.19± 0.01 1.00

Dense orders
NoPolicy −29± 0 6.19± 0.04 0.89
Diffusion 828± 417 6.79± 0.02 0.97

2Hub −29± 0 5.55± 0.06 0.80
cA2C 843± 519 6.77± 0.02 0.97

cA2Cm 989± 452 6.80± 0.03 0.97
PPO 779± 409 6.79± 0.02 0.97

Table 94: Chicago Uniform with non-zero travel cost

Algorithm Minimal Income Total Income [·106] ORR
NoPolicy 0± 0 0.49± 0.02 0.13
Diffusion 0± 0 1.99± 0.02 0.64

2Hub 0± 0 0.04± 0.00 0.02
cA2C 0± 0 1.97± 0.02 0.63

cA2Cm 0± 0 1.98± 0.02 0.64
PPO 0± 0 1.98± 0.02 0.63

Table 95: Chicago Uniform with matching within a single cell

Time-oriented fairness

In this section, we study a business model, when fairness among drivers is
achieved by paying a pre-defined salary, or where the salary depends on the
total service time, including the idle time. An example of the use case appears
in food-delivery companies, such as Delivery Hero3. The task of drivers is the
same as with ride-hailing companies – a driver requires to pick up an order
and deliver to a destination.

Fairness among drivers is a hot topic in this business model as well, and
achieved by providing convenient shifts and utilizing the Grab Single mode.
While the problem of shift scheduling has been addressed previously in [49], we
raise another fairness issue, such as uniformness of a workload among drivers.
We define the fairness objective in this case as minimizing the maximum idle
time among drivers, and in this section, we address the problem of an optimal
cruising for that objective.

We adapt existing NN-based solutions (cA2C, cA2Cm and PPO) by re-
defining the environmental reward and state features. Now, a state with

3https://www.deliveryhero.com/

https://www.deliveryhero.com/

96 CHAPTER 9. FAIR CRUISING

(a) Random matching (b) Poorest-first matching

(c) Non-zero travel cost (d) Dense orders

(e) Sparse drivers (f) Dense orders + travel cost

Figure 910: Chicago Uniform

expanded features contains minimal, maximal and average non-idle time of
drivers, i.e. the time that a driver has not been cruising. The state for cA2C
has not been changed. The reward is set to a minimal non-idle time per cell.
Then, the maximization of the revenue corresponds to the minimization of the
idle time of drivers.

We compare time-oriented cA2C, cA2Cm, and PPO in the case of a re-
duced number of drivers, where ORR is middle-range (the same case as the
one presented in Figure 910e). Results for time-oriented solvers are shown
in Table 96. The naive baselines show zero minimal and average non-idle
time. Presented solvers show very close results in terms of non-idle time, with
a slightly better average for PPO, and minimum for cA2Cm. Total Income

9.7. CONCLUSIONS 97

Algorithm Min / Avg Non-Idle Time Tot. Inc. [·106] ORR
cA2C 24± 15 / 28.49± 0.31 1.48± 0.02 0.56

cA2Cm 25 ± 14 / 28.48± 0.26 1.48± 0.02 0.56
PPO 24± 12 / 28.54± 0.26 1.48± 0.02 0.56

Table 96: Time-oriented fairness in case of sparse drivers

hasn’t changed significantly in comparison with Figure 910e, dropping from
1.49 · 106 to 1.48 · 106. Minimal Income is zero in all cases.

9.7 Conclusions
We formulated the novel problem of fair cruising in multi-agent taxi fleet man-
agement. The objective is to maximize the minimal income among drivers.
We studied recent advances in the field and adapted several existing neural-
network-based cruising solutions to the needs of this problem, augmenting
them with the capacity to perform minimal dispatching operations in favor
of the worse-off drivers apart from offering cruising advice. Our experimen-
tal study using a real-world dataset, comparing the new solutions and naive
baselines, shows that our adaptations reach better fairness objectives when
augmented with poorest-first matching, while state-of-the-art solutions for
revenue maximization cannot achieve non-zero minimal random matching.
Besides, we showed that the same algorithms can be used for an objective of
the fair workload under a business model with a pre-defined driver salary.

Chapter 10

Network Immunization

Given a network in which a undesirable rumor, disease, or contamination
spreads, which set of network nodes should we block so as to contain that
spread? Past research has proposed several methods to address this network
immunization (NI) problem, which is to find a set of k nodes, such that the
undesirable dissemination is minimized in expectation when they are blocked.
As the problem is NP-hard, some algorithms utilize solely features of the
network structure in a preemptive manner, to others that take into account
the specific source of a contamination in a data-aware fashion.

This Chapter consists of two parts, Sections 10.1–10.4 and Sections 10.5–
10.7. The first part presents an experimental study on NI algorithms and
baselines under the independent cascade (IC) diffusion model. We employ
a variety of synthetic and real-world networks with diverse graph density,
degree distribution, and clustering coefficients, under realistically calculated
influence probabilities. We conclude that data-aware approaches based on
the construct of dominator trees usually perform best; however, in networks
with a power-law degree distribution, preemptive approaches utilizing spectral
network properties shine out by virtue of their efficiency in identifying central
nodes.

In the second part we present a new content analysis workflow which we
use to derive the real-world influence probabilities for several diffusion control
models; this workflow was also applied in the first part. State-of-the-art al-
gorithms for prescriptive fine-grained diffusion control rely on simple models,
most prominently the Independent Cascade (IC) model, rather than on ad-
vanced machine learning approaches. The simplicity of such models can be an
advantage. Yet, to exploit this advantage, one needs not only well-designed
algorithms, but also a powerful model-training framework that yields well-
informed models. Unfortunately, much research effort has been devoted to
algorithm design, while the development of techniques for informing the un-
derlying model has been largely neglected.

99

100 CHAPTER 10. NETWORK IMMUNIZATION

(a) GRP (b) BA (c) Binomial

(d) WS (e) Grid

Figure 101: Generated Graph Examples. Darker color indicates higher degree,
normalized per graph.

We rely on a log of user text messages to derive a measure of similarity
among those messages, and therefrom calculate the probability that one node
influences another. We evaluate our model in terms of its predictive power
and apply it to two representative diffusion control problems under the IC
model. Our results showcase the capacity of our methods to make correct
predictions, and provide the first, to our knowledge, study of diffusion control
problems with a real-world probability model.

The content of the first part was published in the 23rd International Con-
ference on Extending Database Technology, EDBT 2019 [171]. The second
part was published in the 2019 International Conference on Data Mining
Workshop (ICDMW) [172]. Both papers are in co-authorship with Pana-
giotis Karras. The Chapter contains non-published additional material and
extended results, which are marked by an indentation with a coloured bar.

10.1 Introduction to Node Immunization

Real-world networks facilitate the spread of ideas, behaviors, inclinations, or
diseases via diffusion processes [165]. Oftentimes a diffusion of malicious na-

10.1. INTRODUCTION TO NODE IMMUNIZATION 101

ture needs to be contained via countermeasures [227]. One such countermea-
sure is the blocking of a subset of network nodes. Network Immunization (NI)
calls to find an optimal set of nodes to block so as to arrest a diffusion.

Early works on NI were motivated by epidemiology [69, 234], categorizing
individuals as Susceptible S, Infected I, or Recovered R. Those who are in-
fected infect their susceptible neighbors with a transition rate β, and become
recovered (hence immune) with transition rate γ. In the context of social
networks [249], the Independent Cascade (IC) model [103] generalizes the SIR
model, assigning an independent transition rate β to each edge. Kempe et
al. [138] formulated the Influence Maximization (IM) problem under the IC
model, where the goal is to select k seed nodes that maximize the expected dif-
fusion spread; since then, the problem has been studied extensively [165, 249].

The NI problem is complementary to the IM problem. Certain notions are
useful in both. For example, eigenvalue centrality [234] has been used to guide
seed selection in IM. Similarly, Chen et al. [51] employ the first eigenvalue λ
as a proxy to the objective of NI problem, scoring nodes by the eigen-drop
∆λ that their removal causes, leading to a succession of techniques aiming
to maximize the eigen-drop of immunized nodes [290]. We distinguish two
variants on network immunization: pre-emptive immunization finds a solution
before the epidemic starts; by contrast, data-aware immunization tailors the
solution to a particular diffusion seed [278]. The state-of-the-art data-aware
solution, Data-Aware Vaccination Algorithm (DAVA) [291] employs structures
called dominator trees. Still, the experimental study in [291] is limited to
four datasets with synthetic propagation probabilities; it is not clear how
the topology of the network influences the algorithms performance. At the
same time, recent preemtive immunization methods [234, 247] significantly
outperform the baselines used in [291], yet have not been compared to DAVA
itself. Thus, to the best of our knowledge, no previous work has studied how
data-aware and and preemptive immunization strategies fare under different
graph topologies.

In this chapter, we investigate the performance of state-of-the-art data-
aware and preemptive NI solutions on a variety of real-world and synthetic
network structures with diverse characteristics, and under realistic influence
probabilities with the IC model. Our study features the first, to our knowledge,
application of the most recent algorithm for eigen-drop maximization and a
generic spectral method of activity shaping, to NI under the IC model. We
demonstrate that data-aware approaches are leading in a majority of configura-
tions, yet preemtive ones stand out under particular settings of graph density,
influence probabilities, degree distribution, and clustering coefficients.

102 CHAPTER 10. NETWORK IMMUNIZATION

10.2 Background
The classic approach to preemptive NI is the NetShield algorithm [51]. Net-
Shield greedily selects a set of nodes S, aiming to maximize its Shield value:

Sv(S) =
∑
i∈S

2λu(i)2 −
∑

i,j∈S

A(i, j)u(i)u(j)

where λ and u are the largest eigenvalue and the corresponding eigenvector of
the network’s adjacency matrix A. A set S has high Sv if its elements have
high eigenscore u(i) and are not connected to each other (zero A(i, j)). A high
eigenscore implies that their removal leads to a significant eigen-drop ∆λ. The
algorithm has a O(n|S|2) complexity, where n is the size of a network.

NetShield defines an epidemic threshold β′ such that any edge transition
probability β > β′ would result in a significant portion of the network being
contaminated. The algorithm utilizes the fact that the epidemic threshold is re-
lated to the first eigenvalue of the network adjacency matrix as β′ = 1/λ [264].
Thus, λ expresses the vulnerability of the network to an epidemic. Tariq et
al. [247] improved upon NetShield by approximating the eigen-drop, relying
on the fact that λ can be expressed as the limit trace of the p-exponential
adjacency matrix A, which equals the number of p-sized closed walks in the
graph, cwp:

lim
p→inf,p even

(trace(Ap))1/p = λ

trace(Ap) = cwp(G)

The proposed method greedily selects a set of nodes to block based on their
contribution to closed walks, hence to network vulnerability, approximating
cwp by a submodular score function, calculated by partitioning vertices into
α equal-size groups by means of a set of hash functions i = {1..γ}. In our
experiments, we use α = 200 and i ∈ {1..3}.

The published version suggested using p = 6, yet in communication with
the authors we confirmed that p = 8 feasibly leads to improved results; we
refer to this algorithm as Walk8; its complexity is O(n2 + γ(n + α3) + nk2).

DAVA [291] accepts the seed set of a network diffusion as input and builds
its NI solution around dominator trees. A node u dominates a node w w.r.t.
a seed node s if all paths from s to w pass through u. A dominator tree is a
tree where each node is dominated by its ancestors. The benefit of removing a
node is calculated as γ(v) = 1 +

∑
u∈children of v γ(u) ·pvu, where pvu stands for

the probability that influence propagates along any path, approximated via
the most probable path, from v to u.

DAVA iteratively removes the node of highest benefit and reconstructs the
tree. In a DAVA variant, DAVA-fast, the tree is built only once and top-k
nodes are selected based on their benefit in one go. A dominator tree is built
in O(E log N) [155].

10.2. BACKGROUND 103

NetShape [227] immunizes a network via a convex relaxation approach,
maximizing the eigen-drop of the network’s integrated and symmetrized Haz-
ard matrix, a matrix of a continuous integrable transition rate functions {β(u, v, t)}u,v∈V ,
which indicate the probability that v is influenced by u at time t after u gets
infected. The first eigenvalue bounds the expected spread of an infection.
We apply NetShape as a heuristic for the IC model, setting the integral of
the transition rate β(u, v, t) as equal to the influence probability between u
and v, and minimize the first eigenvalue by the projected subgradient descent
method in the space of possible Hazard matrices after immunization, while
setting the effect of immunizing u on the integrated hazard matrix element
as 0, if u is a seed. The complexity is O(1

ϵ2 p2
maxE ln E), where pmax is the

maximum propagation probability, and ϵ is a parameter affecting a step of
subgradient descent.

While our work focuses on immunization under the IC model, more ad-
vanced models exist that refer to the similar NI problem under extra con-
ditions. We list some of them.

One of the simplest generalizations of the Data-Aware NI we consider in
this work is the Dynamic Data-Aware NI, where the budget for immunized
nodes is distributed over time. The model implies a possibility to observe
a trend of propagation dynamics and postpone the decision. Cui et al [69]
expand DAVA to the dynamic case. Wang et al. [262] solve the problem
by mixing the Data-Aware model with the compartmental Ising model, one
of the simplest models from stochastic graph analysis. Yang et al. [278]
proposes another greedy solution based on recursive activation probability
estimation. Consider Yang et al. for references on time-dependent break-
outs, minimization of budget, NI under the Linear Threshold model, and
centrality-based immunization strategies.

A problem closely related to the Dynamic NI is the Stochastic Firefighter
problem, presented recently by Tennenholtz et al. [250]. The goal is to
derive a sequential vaccination policy, having a budget on immunized nodes
per time iteration, rather than per all spreading time. Authors provide
a descriptive analysis of the problem under the SIR model and focus on
infection growth rate bounds in regular graphs like d-dimensional grids.

Wilder [272] et al. considers a complex model that includes a grouping
of population, birth frequency, migration, and uncertain underlying data.
Their framework uses submodular optimization to solve a novel multiagent
model of disease spread. Other group-based solutions are considered in
[226, 291]. [186, 234, 271] consider diffusion shaping in multiplex and data-
rich networks, defining models with multi-objective that shape a diffusion
over multiple network layers or considering heterogeneous edge and node
labels.

Data-Driven immunization, unlike Data-Aware immunization, appears
in the literature in the context of the tracking log analysis. [104] works

104 CHAPTER 10. NETWORK IMMUNIZATION

Graph Type |V | [·103] |E| [·103] degmin/avg/med/max Clust. coeff. cl

Binomial 1.0 14.7 4/15/15/30 0.012
GRP 1.0 14.6 2/30/26/90 0.325
WS 1.0 7.0 18/28/28/44 0.237
BA 1.0 29.4 28/59/40/498 0.103
Grid 1.0 39.7 4/8/8/8 0.000

Stanford 9.9 36.9 0/7/5/555 0.392
Gnutella 62.6 147.9 1/4/2/95 0.007

VK 2.8 40.9 1/29/14/288 0.235

Table 101: Default parameters for graph types

Graph Type influence prob. W seed fraction sf k fraction kf

Binomial 0.2 0.05 0.05
GRP 0.1 0.01 0.05
WS 0.2 0.05 0.05
BA 0.1 0.05 0.05
Grid 0.7 0.05 0.05

Stanford 0.2 0.2 0.2
Gnutella 0.2 0.2 0.2

VK – 0.2 0.2

Table 102: Default parameters for graph types

towards inferring the propagation network based on the infection log.
Zhang [292] defines Data-Driven NI where immunization strategy is derived
solely based on the diffusion log, omitting any diffusion model. They work
with so-called contact networks, where nodes represent people, and edges
are geographical interactions. The algorithm samples possible cascades of
infection propagation and immune nodes that profit in most of the sampled
cascades.

10.3 Methodology
Consider a directed graph G = (V, E) with set of nodes V and set of edges E.
Each edge is associated with a probability of propagation. By the independent
cascade model, a diffusion occurs in discrete time steps. In step t0, a seed set
S ⊂ V becomes activated. Any node v activated in step ti attempts to activate
each of its inactive neighbors in step ti+1, and succeeds by the probability
associated with the edge from v to that neighbor. The process terminates
when there are no more newly activated nodes. The Network Immunization
(NI) problem calls to block a select set of k nodes R ⊆ V \S so as to minimize
the expected spread of activated nodes, by a given seed set S in a graph G.

10.3. METHODOLOGY 105

Graph Type Other Parameters
Binomial edge exist. prob. p = 0.015

GRP shape param. s = 20, v = 0.9, intra-group prob. pin = 0.4,
inter-group pout = 0.001

WS neighbors in a ring l = 15, rewiring prob. p = 0.3
BA prob. of triangle p = 0.2, density m = 15
Grid –

Stanford
Gnutella –

VK

Table 103: Default parameters for graph types

(a) Blocked set fraction (b) Blocked set fraction (c) Infl. Prob.

(d) Infl. Prob. (e) Seed set fraction (f) Edge existence prob.

Figure 102: Experimental results on graphs generated by the binomial Erdős-
Rényi model

106 CHAPTER 10. NETWORK IMMUNIZATION

(a) Blocked set fraction (b) Blocked set fraction (c) Infl. Prob.

(d) Infl. Prob. (e) Inter-cluster conn. (f) Intra-cluster conn.

Figure 103: Experimental results on graphs generated by the Gaussian Ran-
dom Partition generator

(a) Blocked set fraction (b) Blocked set fraction (c) Degree of disorder

(d) Infl. Prob. (e) Infl. Prob. (f) Seed set fraction

Figure 104: Experimental results on Watts Strogatz networks

10.3. METHODOLOGY 107

(a) Blocked set fraction (b) Blocked set fraction

(c) Seed set fraction (d) Influence Probabilities

Figure 105: Experimental results on regular grids

Algorithms

We compare six solutions to the NI problem in three categories:

• Naïve: Degree selects the top-k nodes with highest degree; Random
selects k nodes uniformly at random.

• Preemptive: NetShield [51] and Walk8 [247],

• Data-Aware: NetShape [227] and DAVA [291].

On NetShape, we use the default ϵ = 0.2. As exact spread computation
is #P-hard, we estimate spread with any solution via 1000 Monte-Carlo IC
simulations. We use the original Matlab code of Walk8. As seeds cannot be
blocked, we fetch k + |S| nodes to be blocked with Walk8, ensuring that at
least k nodes are blocked. We implemented all other algorithms in Python1.

Data

We use both synthetic and real data obtained as follows.

1Available at https://github.com/allogn/Network-Immunization

108 CHAPTER 10. NETWORK IMMUNIZATION

(a) Blocked set fraction (b) Density (c) Density

(d) Infl. Prob. (e) Seed set fraction (f) Blocked set fraction

Figure 106: Experimental results on graphs generated by the Barabási-Albert
growth model

Synthetic Data

We generated graphs of different properties using five models. By the Erdős-
Rényi model, each edge is present with probability p; generated graphs have a
low clustering coefficient and a binomial degree distribution. We refer to this
generator as Binomial. We render the graph directed by selecting a random
direction for each edge with 50% probability.

A Gaussian Random Partition (GRP) [41] selects edges as with Erdős-
Rényi, but with a prior grouping, where group size follows a Gaussian distri-
bution; it uses a probability value pin for edges across nodes in the same group,
and pout otherwise, hence varying intra-group and inter-group density.

Watts Strogatz (WS) networks model self-organizing small-world sys-
tems [267], which have small average shortest path length, and are highly
clustered, hence susceptible to infectious spread. The generator employs two
parameters: l indicates how many nearest neighbors each node is joined with
in a ring; p is a probability of edge rewiring, which induces disorder.

Barabási-Albert (BA) networks have both high clustering coefficients
(as GRP and WS graphs) and power-law degree distribution, hence are better
imitations of real-world social networks. We use the algorithm of Holme and
Kim [120], which extends the original Barabási-Albert model, yet use the BA
label as its basis; this algorithm randomly creates m edges for each node in

10.3. METHODOLOGY 109

(a) Blocked set fraction (b) Blocked set fraction (c) Seed set fraction

(d) Seed set fraction (e) Infl. Prob. (f) Infl. Prob.

Figure 107: Experimental results on Stanford network

(a) Blocked set fraction (b) Seed set fraction (c) Infl. Prob.

(d) Infl. Prob. (e) VK, Blocked set (f) VK, Seed set

Figure 108: Experimental results on Gnutella (a-d) and VK (e-f) networks

110 CHAPTER 10. NETWORK IMMUNIZATION

a graph, and for created edge with a probability p adds an edge to one of its
neighbors, thus creating a triangle.

Grid graphs have each node connected to four neighbors on a lattice. With
this graph type, we explore the applicability of solutions on spatial graphs such
as geosocial contact networks [292].

Tables 101, 102 and 103 list the default parameters for all models, where
fractions sf = |S|/|V | and kf = k/|V |. Figure 101 shows example graphs.
All synthetic graphs have 1000 nodes, as in [264].

Real-World Datasets

We use 3 real-world graphs. Stanford and Gnutella, have been employed
in related literature; a third, VK, provides a case of real-world propagation
probabilities.

The Stanford data consists of pages and hyperlinks in the Stanford Uni-
versity website2 [291]. The Gnutella peer-to-peer file sharing directed net-
work is part of the SNAP dataset [156]. We use the biggest snapshot of 62586
nodes, with a diameter of 11 nodes and a clustering coeficient of 0.0055. It
has been used in [227, 278, 291]. vKontakte3 (VK) is a Russia-based social
network of more than 500 million users4. Its public API allows to download
information about public profiles, subscriptions, and posts. We fetch public
posts of users to train the IC model.

Parameters

We consider blocked node set size k as a fraction of network size [262].
We employ random seed selection [69, 271, 291]; we pick 10 random seed
sets, and show the mean and standard deviation of activated nodes. We choose
influence probabilities uniformly at random from 0 to a maximum value W .
We learn influence probabilities on the VK data using user posts as actions.
We download 100 latest posts at the moment of publishing per user, resulting
in 21M posts. Most posts are short, hence we can apply the same Natural
Language Processing methods as for short messages. After preprocessing, we
collected 536,073 non-empty messages belonging to non-isolated nodes in the
VK graph, with median length of 11 words, std 187 and max 2977, leaving
us with 3% of the original dataset. We define the closeness of actions by
comparing the content of text messages, as in [152], to learn vector embeddings
of short messages. We define term proximity as p(w2|w1) = 1

|M |
c(w1,w2)

c(w1) , where
M is a set of all posts with non-zero text content, c(w)m is the number of
messages with w, and c(w1, w2) is the number of messages with w1 and w2
present together. We learn stemmed term proximities and enrich the term

2https://www.cise.ufl.edu/research/sparse/matrices/Gleich/
3http://vk.com/
4https://en.wikipedia.org/wiki/VKontakte

10.4. EXPERIMENTAL RESULTS 111

frequency–inverse document frequency vectors of messages by increasing the
probability of any words similar to words present in the message. We consider
all message pairs with similarity above the median as similar. Scanning the
action log to calculate the influence probability from a node u to any nove v as
the ratio of successful reposts of similar messages. Filtering zero-probability
edges, we select the largest component of 2.8K nodes and 40.9K edges as our
VK network.

10.4 Experimental Results

Here we present the results of our study. We set a timeout of 1h for all
experiments for a single solver instance.

Synthetic Data

Figure 102 shows results with Binomial graphs. As the number of blocked
nodes grows, DAVA’s advantage of knowing the seeds becomes evident. Sur-
prisingly, NetShield achieves better results than NetShape and Walk8 in this
graph type. As the graph has a uniform structure, spectral-based algorithms
do not perform well. This uniformity results in performance of algorithms not
being dependent on the number of seeds and influence probability W . Still,
as Figure 102c shows, with large W DAVA is slightly worse than preemp-
tive approaches. DAVA assumes that the influence probability between two
successive dominators in the dominator tree is equal to the probability along
the shortest path. When there are many paths between two dominators, this
assumption fails, hence the accuracy of the algorithm drops. We observe that
NetShape is the least scalable algorithm.

Figure 103 shows results with GRP graphs. Again, the gap increases as k
grows. DAVA achieves the best results on all parameters, except for the largest
pout. We observe that, as the inter-group probability pout grows, DAVA shows
slightly worse performance; in other words, as the graph forfeits its clustered
structure, DAVA provides less accurate probability estimates.

(a) Activated nodes (b) Runtime

Figure 109: Varying the Netshape ϵ, GRP graphs.

112 CHAPTER 10. NETWORK IMMUNIZATION

(a) Edge probabilities (b) Default setting

Figure 1010: Results on GRP graphs with seeds selected by IM.

Figure 109 shows the NetShape performance for varying ϵ. As ϵ drops
from 0.1 to 0.005, performance improves slightly, yet the runtime blows up.
Still, even with the smallest ϵ = 0.005, the solution quality is worse than
that of DAVA.

Figure 1010 presents the behaviour of algorithms with low probabilities
and target seed selection. We select only one node of highest degree as a
seed, while the compared algorithms select k nodes to block as usual. If k ≥
deg(seed), then the optimal solution isolated the single seed. Figure 1010a
shows that only DAVA succeeds to block the single seed, finding the optimal
solution for any graph. Figure 1010b shows the results for other algorithms.
NetShape, the only query-based algorithm, performs slightly better, while
Walk8 gain an advantage over NetShield. Surprisingly, Random performs
better than Degree.

Figure 104 shows results with WS graphs. Here, preemptive algorithms
perform significantly better than DAVA, while the difference is accentuated
as the number of blocked nodes k grows.

Figure 105 shows results with Grid graphs. All algorithms except DAVA
fail to isolate seeds. NetShape outperforms other spectral approaches thanks
to its data-awareness. Runtimes are similar to those in the Binomial case,
with DAVA being sufficiently scalable.

Last, Figure 106 shows results with BA graphs; the degree heuristic and
NetShield perform best. This result indicates that there are limits to the
versatility of DAVA.

Real Data

Figure 107 shows results on the Stanford network. We employ the fast DAVA
that builds a dominator tree only once so as to scale. Exploring a larger
range of parameters than [291] reveals that DAVA performs similarly to the

10.5. INTRODUCTION TO DIFFUSION CONTROL 113

Degree heuristic, and slightly worse as W grows, due to the scale-free data
topology. NetShape and Walk8 could not scale to such size. Gnutella has a
more random topology than the Stanford network. Running on the 62K-node
Gnutella snapshot, only fast-DAVA and baselines terminated within the time
limit. Figure 108 shows the results, with DAVA reasserting its advantage. Our
VK graph has high clustering coefficient and power-law degree distribution.
Figure 108 shows that, on this data, DAVA is outperformed by preemptive
methods. We deduce that, in real-world social networks, isolating diffusion
sources is less critical than immunizing influence hubs.

10.5 Introduction to Diffusion Control

Network diffusion. Phenomena of diffusion in networks involve the spread
of information, attitudes, or infections. Some of those phenomena are cap-
tured by the Independent Cascade (IC) model [103], which is has been applied
in problems such as Influence Maximization (IM) [138, 165] and Node Immu-
nization (NI) [291]. The IM problem asks to find a set of k nodes in a network
that maximizes the expected spread of a diffusion starting out from these
nodes. On the other hand, the NI problem asks for a set of nodes that, if re-
moved, would minimize the expected spread a diffusion emanating from some
other source. These problems arise in social network analysis, viral marketing,
and epidemiology [69, 234].

IC parameters. The IC model requires a single probability value that
describes the influence between two nodes that are connected in the network.
Seed nodes are initially active. Once any node is activated, it tries to activate
(influence) its neighbors, and succeeds with the corresponding edge probabil-
ity. The assessment and exploitation of diffusion control methods requires an
accurate estimation of IC model probability parameters, as these probabilities
may emphasize network localities. For example, as Zhang et al. [288] show, in
real-world networks, the retweeting probability is negatively correlated to the
amount of social circles a user belongs to, i.e. the number of friends that do
not know each other. Such effects are hardly captured by synthetic models.

IC training Despite the wide usage of the IC model, the question of
its training has been poorly covered. Some works train the IC model based
on a set of actions. For instance, Saito et al. [225] learn model parameters
using an expectation-maximization approach, applied on a set of references
to a particular topic in a blogging platform. Netrapalli et al. [194] use such
approach to learn graph parameters and the graph itself. Goyal et al. [105]
suggest a more scalable approach to learn model parameters; they define a
propagation probability between two adjacent nodes as puv = Av2u

Atotal
, where

Av2u is the number of alike actions performed by v and then by u, and Atotal
is the total number of actions performed either by v (Av), or by both users

114 CHAPTER 10. NETWORK IMMUNIZATION

Figure 1011: Framework for extraction influence probabilities

(Au|v); they apply this solution on a dataset of Flickr accounts, where actions
are group subscriptions.

Content-aware IM Other works [21, 124] introduce content-aware vari-
ants of the IM problem. Most pertinently, Barbieri et al. [21] apply content
analysis to the topic-aware IC model, a generalization of the IC model where
the propagated item (e.g., a piece of news) is associated with a topic vector.
Likewise, each edge is associated with a vector of influence probabilities, cal-
culated in terms of actions of its adjacent nodes. The activation probability
over an edge depends on its topic closeness to thr propagated item, defined
in terms of the item’s topic vector and common interests of adjacent nodes.
Still, the topic-aware IC model assumes topics are the ultimate cause of in-
fluence across network nodes. This model cannot infer influence due to the
relationship among nodes. For example, a user subscribed to a news source
she trusts will tend to be influenced by that source, regardless of topic. In
this case, content analysis is useful for inferring influence (i.e., the user posts
messages of content similar to that of posts by the trusted source), yet the
inferred influence is due to topic-independent factors. To our knowledge, there
has been no attempt to train the IC model based on such general inferences
from the content of exchanged messages, where items belonging to the same
cascade may not be identical.

Frequent flow paths. Subbian et al. [242] study the problem of mining
flow paths in a graph having frequency above a threshold f ; thus, their focus is
not to extract probabilities of flow across each edge, but to identify sequences
of nodes across which information flows frequently.

Influence prediction Some works use richer models than the basic IC
to deliver better prediction of influence. Cheng et al. [58] use message and
user features to predict the size and shape of cascades by machine learning.
Liu et al. [169] use Gibbs sampling to train joint probabilities of influence
between users as well as between items, modeled as distinct types of nodes in

10.6. FRAMEWORK 115

(a) BA Graph (b) VK Graph

Figure 1012: Synthetic (left) and Real-World (right) Dataset

a heterogeneous network. Wang et al. [266] use an embedding model and apply
Maximum Likelihood Estimation for prediction, using the network structure
for regularization. However, these prediction models are inapplicable with
modern diffusion control algorithms, as they do not scale to the computations
such algorithms rely upon, and violate those algorithms’ assumption of edge-
based influence independence.

In this part of the Chapter, we propose an end-to-end framework, that so
far has been missing, for the extraction of accurate, general-purpose, topic-
independent influence probability values from the real-world content of user
text messages. We start out with a topic vector representation of messages,
similarly to previous works, yet consider circumstances in which, in a propa-
gation trace, the content of a reposted message has no reference information
and is not identical to, but merely similar to, the original. We emphasize that
we do not propose some new model with better prediction power than others;
instead, we propose a new learning framework for the existing, widely used IC
model, so as to enhance the real-world applicability of IC-based diffusion con-
trol algorithms, and conduct the first, to our knowledge, experimental study
of such algorithms under model parameters trained by real-world interactions.

10.6 Framework

The Independent Cascade (IC) model captures a diffusion in a network. Let
G = (E, V) be a directed graph, where nodes correspond to users of a social
network and edges correspond to subscriptions. A node can be in active or
passive state. Each edge is associated with a probability p :E → (0, 1), which
indicates how likely it is that the source influences the target. Information
propagates in discrete time stamps ti. Nodes that are active at t0 are called
seeds. If a node v becomes active at ti, then for each (v, u) ∈ E such that u is

116 CHAPTER 10. NETWORK IMMUNIZATION

(a) Degree Distribution (b) Message Length (c) Term Frequency

(d) Message Similarity (e) Probability Distribution (f) AUC

Figure 1013: Dataset statistics

not yet active, u becomes active at ti+1 with probability p((v, u)). We train
the IC model by assessing similarities on a log of posts, using tokenization and
morphological analysis, as follows.

Data Collection

We use the VKontakte (VK)5 social network. A profile in VK represents either
a single user, or a community page (a group). The VK API allows to query
only public data of active profiles. A profile can subscribe to another profile.
A mutual subscription is called a friendship. We model profiles as nodes in a
social graph. Each profile has a wall — a blog with posts. A post may contain
a text message, pictures, audio, video, or documents. We use text message
contents to derive post similarity, and ignore all attachments. A post is labeled
by publishing time, author, content, and a history of reposts. A repost is a
post that refers to another post; a post can refer only to one other post; the
referred post appears on the wall of the repost author, along with content by
the author. We do not concatenate the texts of all reposts, yet we define all
reposts to be similar to original posts by default. Yet, as only 0.2% of all
downloaded posts are reposts, we can not use reposts for influence probability
learning. Therefore, we calculate message similarity based on content. We
query the following information about profiles:

5https://vk.com/

10.6. FRAMEWORK 117

• Information about a profile, including state (active or inactive).

• The list of subscribers of a profile.

• The latest 100 posts from the wall of a profile, including a history of
reposts; reposts may belong to any network profile, including closed or
deleted ones; this limit is due to VK API’s constraint on a query to a
profile’s wall.

We query groups and users independently. We initiate the database with a
few random nodes, and continue to query nodes on first-come-first-served ba-
sis, whereby new node IDs come from the retrieved lists of friends/subscribers.
For those nodes with known lists of friends, we queried the latest posts.

After retrieving several thousands of nodes, we change the approach so
as to enhance graph connectivity. First, we query a detailed information
about a set of profiles. We then query lists of friends and posts for publicly
available profiles with more than 10 connections; we filter those with less than
10 connections to reduce data sparsity. Then we go through a process in which
we iteratively collect profile ids by a priority queue, increasing the score of a
node v by 1 each time v appears as a friend of a user in the previous set, and
by 2 if v has authored any repost from the previous set.

Eventually, we extract a list of nodes, each having a full friend list and
wall available and appearing in at least another node’s friend list, amounting
to 5.6 · 105 nodes and 1.5 · 108 edges; 14% of those are user profiles, while
others are group profiles; groups are more likely to set public profiles. We
select nodes having at least 5 posts and pick the largest weakly connected
component to obtain a graph of 2452 nodes, 28108 edges, and 106, 217 posts;
the graph, depicted on Figure 1012b, has clustering coefficient [228] 0.121 and
mean degree 22; its degree distribution appears in Figure 1013a.

Probability Extraction

We used as tokens morphological word lemmas obtained by MyStem6 [233];
we ignore unrecognized words, e.g., URLs and smileys, and omit stopwords
with the NLTK library [31]. Figure 1013b shows message length distribution
before and after preprocessing; in VK there is no character limit.

To calculate the similarity of posts, we need a term similarity measure.
We considered two such measures: (i) the Jensen-Shannon divergence of term
co-frequency, suggested in [152]; and (ii) a skip-gram model [34] pretrained on
Wikipedia, provided by FastText7. FastText utilizes word stem information
to represent words that are not in the training data. Figure 1014 shows the
correlation among these two measures, based on pairwise cosine similarities,
by on two measures, among a random sample of terms. We see that there is

6https://tech.yandex.ru/mystem/
7https://fasttext.cc/

https://tech.yandex.ru/mystem/
https://fasttext.cc/

118 CHAPTER 10. NETWORK IMMUNIZATION

no much correlation. Table 104 shows examples of some of the most similar
(translated) terms according to FastText. Based on the observation of such
examples, we opted for FastText.

Figure 1014: Term sim.

Term 1 Term 2 Similarity
mess up curl up 0.7704

pour knead 0.7066
economic sociological 0.6649
button shirt 0.6308
fanatic aggressive 0.6113

Table 104: FastText sim. examples

Next, we consider two ways to calculate post similarity: (i) AVG [241],
the cosine similarity among the averages of term vectors in each post; (ii)
enriched TF-IDF [152], which is tailored for embeddings of short messages, as
it amplifies the entry for a term w in the tf-idf vector of a message m using
all terms w′ present in m, weighted by similarity to w:

tf-idfw,m = 1−Πw′(1− tfw′,m · idfw′ · p(w|w′))

where p(w|w′) is the cosine similarity between term embeddings, given by
FastText. We applied a minimum document frequency (cut-off) of 0.001%,
and a maximum document frequency of 1%, yielding 6.6 · 104 terms. Fig-
ure 1013c presents term frequencies. The minimum frequency filters words
that appear too rarely to influence message proximity, while the maximum
frequency indicates words that appear too often, and are therefore unlikely
to reflect specific context. Figure 1013d juxtaposes the two post similarity
approaches on a random sample of 1000 posts; in this case, as opposed to the
case of term similarity in Figure 1014, we observe a high correlation. We opt
for enriched TF-IDF as the more refined approach.

Eventually, we calculate edge probabilities by scanning the log of posts.
We define influence probability as puv = Av2u

Av
, where Av2u is the number of

posts by user v that are similar to an earlier post by u. We consider a pair of
posts A from u, B from v, as similar only if (i) A satisfies a content similarity
threshold τ with respect to B, i.e., cos (tf-idfA, tf-idfB) ≥ τ , (ii) A precedes B
by at most one month, and (iii) no earlier message B2 from v satisfies τ with
respect to A, and no later post A2 from u satisfies τ with respect to B; in
other words, we assume a user is influenced by a post only once. Figure 1013e
shows the resulting probability distribution.

For each post m and each neighbor of its author, we consider the existence
of a similar post m′ on the neighbor’s wall as a positive instance of propagation.
We use a cutoff threshold θ ∈ (0, 1) to determine our probabilistic predictions
of propagation. Scanning the log of posts, as in [105], we derive True Positive

10.7. APPLICATIONS 119

(a) VK (b) BA (c) ∆rel = IMM−Degree
Degree

(d) VK (e) BA (f) ∆rel = NetShield−DAVA
NetShield

Figure 1015: Results on IM vs. seeds s (a-c); NI vs. blocked nodes k (d-f);
Real (RP), Exponential (EP) and Trivalent (TP) probabilities

and False Positive Rates for all values of θ, TPR = T P
T P +F N , FPR = F P

F P +T N .
We evaluate the quality of the trained probability model by the Area Under
Curve: AUC =

∫
TPR dFPR. Figure 1013f presents AUC values for different

content similarity thresholds τ . We select τ = 0.994, which maximizes AUC
(0.9062), as the default τ . Filtering zero-probability edges, under the chosen
τ , yields a network of 2094 non-isolated nodes, which we use henceforward.

10.7 Applications

Here, we investigate the behaviour of real-world VK data in comparison to
synthetic data generated by the Barabási-Albert (BA) model (Figure 1012a)
that simulates a power-law degree distribution, on two problems: Influence
Maximization (IM), where the objective is to maximize expected spread of
selected seeds, and Node Immunization (NI), where the objective is to select
nodes to block/remove so that the expected spread of some seeds is mini-
mized. We consider the data-aware NI problem, where seeds are known in
advance [291]. We use the algorithm of Holme and Kim [120] that extends the
original BA model, selecting parameters so that the BA graph has the same
number of nodes and edges, and similar degree distribution (Figure 1013a)
and clustering coefficient (0.101) as the VK graph. We evaluate expected
spread by 10,000 Monte-Carlo simulations. We also use a synthetic proba-
bility model, the trivalency model that randomly select low (0.01), medium
(0.05) or high value (0.1), applied to both VK and BA data, and an expo-
nential model on BA data, generating probabilities by the probability density

120 CHAPTER 10. NETWORK IMMUNIZATION

function 1
c exp(−x−µ

c), where c and µ are parameters fit to probability distri-
bution of the VK data. The code and the resulting VK dataset are available8

online.

Influence Maximization

We apply the IMM algorithm [246] with accuracy parameter ϵ = 0.1 and the
Degree heuristic [138] on the IM problem. Figures 1015a-c show our results on
different networks and probability models. ∆rel shows the relative performance
gap among two algorithms. Revealingly, on VK data, the performance of IMM
deviates from that of the naive degree heuristic more with real probabilities
than with trivalency (Fig. 1015a), while on synthetic graphs, it deviates more
with trivalency (Fig. 1015b, 1015c).

Node Immunization

Node Immunization can be solved in a data-aware manner, when seeds are
known in advance, or preemptively, when they are not. We use the state-
of-the solution for each case: DAVA [291] accepts a seed set S (calculated by
IMM) as input and builds an NI solution informed by domination relationships
among nodes with respect to S; it calculates the benefit of removing a node as
γ(v) = 1+

∑
u∈children of v γ(u) ·pvu, where pvu is the probability that influence

propagates along the most probable path from v to u. NetShield [51] blocks
preemptively a set of nodes, S, maximizing the Shield value:

Sv(S) =
∑
i∈S

2λu(i)2 −
∑

i,j∈S

A(i, j)u(i)u(j)

where λ and u are the largest eigenvalue and the corresponding eigenvector
of the network’s adjacency matrix A. A set S has high Sv if its elements
have high eigenscore u(i) and are not connected to each other (zero A(i, j)).
A high eigenscore implies that their removal leads to a significant eigen-drop
∆λ. Figures 1015d-f present our results with these algorithms, with |S| = 100.
Remarkably, DAVA outperforms NetShield in limiting spread all cases except
with trivalency on VK. As in IM, using trivalency we overestimate the lead of
the state-of-the-art algorithm on BA, and underestimate it on VK.

10.8 Conclusions
In the first part of the chapter, we conducted an exhaustive experimental
study of network immunization methods. We conclude that, while data-aware
approaches stand out on networks with uniform topologies, spectral structure-
based approaches are competitive on networks with power-law topologies.
This result calls for further research.

8https://github.com/iconvk/LearningIndependentCascadeOnVK

https://github.com/iconvk/LearningIndependentCascadeOnVK

10.8. CONCLUSIONS 121

In the second part, we presented a framework for extracting influence
probabilities for the independent cascade model, using textual content anal-
ysis and a vector representation of messages in a network. We showed that
our trained model has good prediction power, and applied it experimentally
on two network diffusion problems, influence maximization (IM) and network
immunization (NI), with real-world and synthetic networks. Juxtaposing re-
sults obtained with probabilities derived by our framework to those obtained
by synthetic ones, we find that state-of-the art algorithms for IM and NI ex-
press their lead with real-world probabilities on real-world networks; the use
of a synthetic probability model amplifies that lead on synthetic networks but
distorts it on real networks, especially in node immunization.

Chapter 11

On the Robustness of Cascade
Diffusion under Node Attacks

How can we assess the ability of a network defined in probabilistic terms to
maintain its functionality under failures? Network robustness has been stud-
ied extensively in the case of deterministic networks under threats to their
connectivity. However, applications such as the online diffusion of informa-
tion and the behavior of networked public raise the question about robustness
in a probabilistic network. In this chapter, we propose three novel robust-
ness measures for networks hosting a stochastic diffusion process under the
Independent Cascade (IC) model, which is susceptible to node failures. The
outcome of such a process depends on the selection of its initiators, or seeds,
by the seeder, as well as on two parameters not on seeder’s discretion: the
attack strategy and the probabilistic diffusion outcome. In an abstraction,
we consider three levels of seeder awareness regarding these two uncontrolled
parameters, and evaluate the network’s viability aggregated over all possible
extents of node failures. We introduce novel algorithms from building blocks
found in previous works to evaluate the proposed measures. A thorough exper-
imental study with synthetic and real, scale-free and homogeneous networks
establishes that the proposed algorithms are effective and efficient, while the
proposed measures highlight differences among networks in terms of their ro-
bustness and the surprise they can furnish under attack. Last, we devise a
new measure of diffusion entropy that can inform the design of probabilisti-
cally robust networks.

The content of this chapter was published at the Proceedings of the Web
Conference 2020 [174], in co-authorship with Yuchen Li and Panagiotis Kar-
ras. The chapter also contains extended results and references, marked by an
indentation with a colored bar. Section 11.2 contains an extended literature
review on a difference between the Influence Maximization and the Node Im-
munization problems, and a summary of the submodularity of their objectives
under different diffusion models. Section 11.4 contains a new repeatability

123

124
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

experiments of the results of He and Kempe [114]. Section 11.4 presents simi-
larities between proposed measures using Jensen-Shannon divergence. Section
11.4 shows that the difference between two of the measures is the largest for
middle-range influence probabilities in a real-world citation network. In Sec-
tion 11.4 we improve the robustness of Ego-networks in a social network with
real-world influence probabilities. We apply our approach of incremental node
removal, and illustrate the expressiveness of the newly proposed robustness
measure. Finally, Section 11.4 provides an extended study on the scalability of
the proposed algorithms. The extended version of the chapter was submitted
to IEEE Transactions on Knowledge and Data Engineering [175].

11.1 Introduction

Networks are ubiquitous in the modelling of infrastructures [199], social inter-
actions [165], physical and life-science phenomena [43, 230]. Yet such networks
are subjects to failures [82], whereby some of their elements may be disabled
or removed. The impact of such a structural failure on network performance
depends on the desirable features of a network’s operation in a particular
application.

Network robustness is the ability of a network to retain critical features
of its functionality in the face of uncertainty regarding its components. A
quantitative measure of robustness expresses the degree in which a network
topology may retain essential features despite a failure [229].

Deterministic robustness. Some measures of network robustness gauge
the change of a deterministic network graph property after random failures.
The measured property may be the network’s diameter, average path length [168],
or inverse shortest path length [205]. A critical measure is the size of the
largest connected component (LCC) [168, 229], uses in domains from power
grids [230] to biological systems [43]. Such analysis is grounded on percolation
theory [240], which studies problems such as the dependence of a network’s
largest cluster on node failure probability and predicts phase transitions, i.e.,
rapid and cardinal changes of network affordance when a parameter reaches a
critical value. Schneider et al. [230] proposed a measure aggregating determin-
istic robustness over all possible sets of blocked nodes to capture a network’s
vulnerability to failures. Yet random failures have a small effect on scale-free
networks [7]: an alteration in the periphery does not influence the overall per-
formance much, while a targeted attack on hub nodes may easily disconnect
the network [230].

Stochastic robustness. In applications such as information diffusion and
epidemiology there is uncertainty regarding the connections in the network,
i.e., the network is stochastic. In this context, we may study the operation
of such a stochastic network under targeted node failures (or, equivalently,
attacks on nodes), expressed as the expected number of activated (or infected)

11.2. BACKGROUND 125

nodes under some parameters of a diffusion process. We refer to this type of
robustness as probabilistic network robustness. Despite the extensive study of
deterministic network robustness [143], its probabilistic counterpart has been
only scantily studied. There are studies on how to engineer some kind of
robust diffusion in an uncertain or adversarial environment [56, 114], but an
investigation on how robustness is to be measured in such environments is
missing.

In this chapter, we study the robustness of probabilistic networks expressed
by means of the capacity to initiate, in expectation, a successful independent
cascade diffusion under adversarial node failures. We introduce three robust-
ness measures, built on two sources of uncertainty: node failures in the network
and probabilistic network outcomes.

In more detail, our main contributions are the following:

1. we define the concept of probabilistic network robustness under adver-
sarial node failures, which represents the capability of a network to host
a diffusion process starting from some seeds, under the Independent
Cascade model;

2. we introduce the notion of seeder awareness and propose algorithms
to measure network robustness under different awareness levels and an
unknown number of node failures;

3. we enhance the DAGGER [281] reachability index and use it in the case
the seeder is aware of network outcomes;

4. we utilize and enhance the runtime of recent solutions to the Robust
Influence Maximization problem [114] so as to compute the effects of
node failures;

5. we study the robustness of scale-free and homogeneous, synthetic and
real-world networks, and investigate their interrelationships and values
under different parameters.

11.2 Background

Processes in large networks, such as the flow of electricity from supply to
customers in a power grid network, package routing and delivery in the inter-
net, and protein delivery in a cell, are vulnerable to failures or attacks. Such
events may have dramatic effects, e.g., depriving millions of people from elec-
tricity [68], or causing epidemics [261]. There is a need to gauge the extent of
such effects and design protection mechanisms. Network robustness is defined
by the impact of a network perturbation on such processes.

126
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

Deterministic Robustness of Integrity

Network robustness reflects a network’s ability to maintain its connectivity af-
ter the disconnection or deletion of some nodes or edges, targeted (i.e., attacks)
or random (i.e., failures) [177]. The connectivity of an undirected network is
typically measured by the expected size of its largest connected component
(LCC) after an attack [177]; maximizing this size renders the network robust.
On a deterministic network, even under a probabilistic attack, we obtain a
notion of deterministic robustness; yet the expected LCC size is also defined
on probabilistic undirected networks [123].

The study of robustness under random failures is informed by results of
percolation theory, which describes the physics of phase transitions [20, 240]
in systems such as those of magnets, fluids [240], and proteins [269], modelled
as random networks. A phase transition occurs when certain network param-
eters pass a critical threshold value, causing macro-characteristics to change
rapidly [20]. This transition may involve the appearance or destruction of a
giant component, as with the spontaneous magnetization of the Ising magnet
when neighbouring particles have the same magnetic spin under an external
field [240, 262]; to determine such transitions, percolation theory examines the
expected maximum size [20] of a cluster made of particles in the same active
state. An common example of the critical threshold is the Molloy-Reed crite-
rion [20],according to which a giant component appears in a general graph if
⟨k2⟩
⟨k⟩ > 2, where ⟨·⟩ denotes averaging and k denotes a node’s degree.

The Molloy-Reed criterion shows that scale-free networks are extremely
robust to random node failures, while being vulnerable to targeted node at-
tacks [7]; further, increasing their robustness against targeted attacks is in
conflict with maintaining their natural robustness against random failures [20].
Therefore, some robustness measures try to take into consideration both ran-
dom and target failures, yet do not provide a method to achieve high ro-
bustness in those terms [206]. Schneider et al. [230] proposed a local-search
heuristic that rewires edges so as to increase an inclusive measure of robustness
against targeted attacks, while maintaining node degrees, thereby preserving
the network’s scale-free property (i.e., degree distribution). The said robust-
ness measure is the sum of worst-case LCC sizes over all cardinalities of sets
of blocked nodes:

R(G) = 1
n2

n∑
Q=1

s(Q) (11.1)

where n is the number of nodes in the network and s(Q) is the size of
the LCC after removing Q nodes; the normalization by n2 ensures values
are comparable across networks, being in the range [1

n , n−1
2n]. This inclusive

measure considers all cases of a malicious attack or failure, including those
in which the network does not collapse but suffers a big damage [230]. The
simple algorithm in [230] leads to an onion-like graph structure, with nodes

11.2. BACKGROUND 127

of similar degree tending to be connected to each other. Several solutions
have been proposed to achieve this property [110]. An LCC-based measure of
robustness under random edge failures is the reliability polynomial [139]:

Rel(G) =
m∑

i=1
Fi(1− p)ipm−i

where m is the number of edges, Fi the number of sets of i edges whose
removal leaves G connected, and p an independent probability that any each
edge is present. The closely related problem of securing connectivity between
two predefined node sets under edge failures is known as network reliability
problem [89].

We are interested in the robustness of stochastic diffusion processes under
node removals; this notion of robustness resembles the robustness of determin-
istic networks under targeted node attacks and random edge failures, which
has received limited attention [50]. In the next section, we show this connec-
tion.

Stochastic Robustness of Diffusion

Apart from the capacity to retain connectivity despite failures, the notion of
network robustness also refers to a network’s capacity to host a diffusion pro-
cess, despite the exclusion or immunization of some network elements against
it, as one may try to contain the diffusion [20, 33, 51, 114]. The mathematical
modelling of diffusion is independent of its semantics, i.e., whether that is one
of information, one of cascading failures, or a viral infection epidemic [68];
in all cases, the success of the diffusion depends on the network’s robustness.
Similarly, a node’s immunization corresponds mathematically to a node fail-
ure, even though the semantics are different. However, now, the effect of node
removals is evaluated by a stochastic process, hence the concept of stochastic
robustness emerges.

Previous work has proposed epidemic, threshold, and cascading diffusion
models [287]. There are two popular epidemic models [222]: By the SIS
model, nodes can be either susceptible or infected; a node gets infected from
its neighbors by some infection rate, stays in that state for some duration,
and then becomes susceptible again. By the SIR model, a node recovers af-
ter an infection and becomes immune. The expected size of an SIR epidemic
starting at u is equal to the expected size of the connected component that
contains u [79]. Studies with epidemic models typically consider the infection
rate to be homogeneous over a network, yet with information diffusion such
rates are heterogeneous [166]. Two models study information diffusion with
heterogeneous rates: the Independent Cascade (IC) model, a special case of
SIR in which each infected node has only one chance to infect others [291],
and the Linear Threshold (LT) model [138, 165], a stochastic model in which
threshold values are uncertain. Under those models, the Influence Maximiza-

128
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

tion (IM) problem [138] is to select a set of initially active nodes, or seeds, so
as to maximize the expected total number of activated nodes.

Under the LT-class models, we can solve the IM problem by minimizing the
expected number of inactive nodes; under the LT model, this turns out to
be equivalent to minimizing the expected number of activated nodes in the
case of a diffusion from a single seed [190], i.e., the objective posed by the
Node Immunization problem in the case of such a diffusion [190]. Under
the LT model, selecting seed nodes to maximize diffusion is equivalent to
selecting nodes to disable so as to minimize the diffusion from a single seed.
That is so because, by LT, only one in-neighbor of a node u can exist in any
deterministic instance of a probabilistic graph [138], hence there can be at
most one directed path from any node v to u. Thus, the expected diffusion
σ(v) from a single seed v is equal to the sum of probabilities of all paths
from v to other nodes. Selecting nodes to block so as to minimize σ(v)
implies maximizing the sum of probabilities of all paths from v that contain
selected nodes. If v were a node connected to all others, then the same
objective amounts to selecting seed nodes so as to maximize their influence.
This relationship implies a connection to the state of an Ising magnet where
all particles have the same spin in percolation theory [190], and illustrates
the close connection between deterministic and stochastic robustness.

The immunization problem is a special case of the influence-blocking
maximization problem (IBM) [55] under the competitive separated-
threshold model (STM). In the STM model, nodes pick two independent
thresholds for each of two competing opinions in a network. Propagation
starts with two sets of seeds, one set per opinion. Let us denote a seed set for
a positive opinion as S+, and for negative as S−. A node gets activated by
an opinion, if a sum of in-neighbours activated by the same opinion exceed
the threshold. If a node has enough activated nodes of both opinions, it se-
lects one of the opinions at random (a tie breaking rule). Let σ+ denote the
expected number of nodes activated by the positive opinion. The objective
of the competitive IM under the STM model is given by Eq. 11.2, and of the
IBM problem by Eq. 11.3, where ρ−(S+, S−) = σ−(∅, S−) − σ−(S+, S−)
is a negative influence reduction, that shows how much the existence of
positive seeds reduce the negative spread.

f1 = arg max
S+⊆V \S−,|S+|=k

σ+(S+, S−) (11.2)

f2 = arg max
S+⊆V \S−,|S+|=k

ρ−(S+, S−) (11.3)

The submodularity of objectives that use the STM model is summa-
rized in Table 111. The IM objective is submodular for both models. The
competitive influence maximization (CIM) objective is not submodular for

11.2. BACKGROUND 129

IC LT
IM Yes [138] Yes [138]

CIM No [55] No [37]
IBM No for general case [55] Yes [115]

Table 111: Submodularity of objectives related to the separated-threshold
competitive model. Columns correspond to diffusion models, rows to problem
objectives. Cells indicate whether an objective is submodular under corre-
sponding model.

the LT and IC modes. The IBM objective is submodular for the LT model,
and is not submodular for the general case of the IC model, where edge
probabilities are heterogeneous.

Robustness under the IC model

We focus on the IC model, widely used to study word-of-mouth effects in
social networks [165], by which a diffusion proceeds in discrete time steps. At
time t = 0, a set of seed nodes S ∈ V are activated. Any node v activated
at time t tries to activate its out-neighbours at time t + 1 and succeeds with
an independent probability pe = puv for each neighbor u. In case of success,
the edge e active. This cascading process terminates when there are no more
trials for activation. After termination, the set of active nodes and edges,
i.e., the single outcome of an IC diffusion, forms a deterministic live-edge
graph g [138]. The expected cumulative number of activated nodes equals
the expected number of nodes reachable from S in G, where each edge may
independently fail with probability 1−pe. Therefore, the stochastic robustness
of diffusion under the IC model corresponds to the deterministic robustness
of a directed network under targeted node attacks and random edge failures,
measured with respect to seeds.

A related question is the IC model’s sensitivity to edge perturbations [3,
113, 254], whereby, instead of a value of influence probability pe per edge,
there is a confidence interval [le, ue], such that pe ∈ [le, ue]. Beyond stability,
two works study the problem of robust influence maximization (RIM) under
edge perturbation [56] or any adversarial source of uncertainty [114]. Given a
finite set of adversarial strategies Θ = {θ}, the objective in [114] is:

max
S,|S|≤k

min
θ∈Θ

σθ(S)
σθ(S∗

θ)
(11.4)

where σθ(S) is the spread (i.e., number of activated nodes) achieved by seed
set S under strategy θ and S∗

θ is the optimal seed set for θ, and k is a budget
constraint; the normalization by σθ(S∗

θ) emphasizes the fraction of optimal
influence achieve, as opposed to an absolute measure; subsequent work [135]

130
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

proposed a solution for continuous θ, using the spread function without nor-
malization.

As this objective is not submodular, solutions to the IM problem are not
applicable. The Saturate Greedy (SatGreedy) algorithm [114] solves the RIM
problem by targeting the cumulative effect of all strategies. This trick makes
the objective submodular, since the optimization against a single strategy
is submodular. SatGreedy performs a binary search on this objective func-
tion. At each step of the search, it constraints the objective value and checks
whether it is possible to greedily collect a seed set S so as to reach that
objective value constraint. This algorithm is applicable on any monotonic
and submodular parameterization of the spread function, and provides a bi-
criteria approximation guarantee, as violating the budget constraint k by an
O(k ln |Θ|) factor leads to an (1− 1

e) approximation of the optimal solution. We
adopt the RIM objective as a component in one of the measures we introduce,
and apply one of the algorithms in [114] to compute that measure.

Stochastic graph with nodes V and edges E G = (V, E)
Number of nodes and edges of G n, m

A deterministic graph sampled from G g ∼ G

Edge probability parameter W

A set of immunization strategies Θ = {θi}
Degree of a node v d(v ∈ V)

Number of blocked (removed) nodes ℓ

Reachability indicator function I(v, S)
ℓ-sampling parameter α

EMR-RNI D

Expected number of activated nodes σ

A seed set S and size of the set k S, k = |S|

Table 112: Notations

11.3 Diffusion Robustness Measures
We propose three novel measures of IC-diffusion robustness, anchored on the
abstract awareness of a seeder, who selects seed nodes, regarding node failures
and probabilistic diffusion outcomes. Table 112 lists our notations.

Immunization Strategies

We measure robustness against node failures, assuming an attacker who dis-
ables or immunizes nodes. A consideration of all possible attack strategies
amounts to the NP-hard problem of node immunization [51, 115, 291], which
is outside the scope of this work. We restrict node failures to a strategic set

11.3. DIFFUSION ROBUSTNESS MEASURES 131

of structure-aware immunization strategies, Θ(ℓ) = {θi(ℓ, G)}, where ℓ is the
number of immunized (disabled, failed) nodes, and G is a directed stochastic
network [114]; each θ(ℓ, G) (or θ(ℓ) for brevity) is the set of ℓ nodes chosen by
immunization strategy θ applied on G; we denote as gθ the graph we obtain
by removing nodes from a deterministic instance g of graph G according to
strategy θ(ℓ). Finally, Θ = {Θ(ℓ)|ℓ = {0..|V | − 1}}. In particular, we opt
for attack strategies that select ℓ nodes in an order; each strategy is also a
node ranking function. A study on immunization strategies [17] found that
a collection of strategies of four algorithmic types are assigned to three or
four clusters based on their output by diverse distance measures. We select
six strategies that represent each type and cluster in [17], plus a standard
spectral-based immunization baseline (NetShield) [51, 171, 227, 291]:

1. Degree picks nodes with the largest degree;

2. Random picks seed nodes uniformly at random;

3. Acquaintance [65] picks a random node’s neighbor;

4. PageRank ranks nodes by PageRank values [200];

5. Katz centrality [137] equals xi = α
∑

j Aijxj + β, where α = 0.1, β = 1,
and A the network’s adjacency matrix.

6. Betweenness centrality is the sum of the fraction of all-pairs shortest
paths that pass through a node.

7. NetShield [51] greedily selects a set of nodes S, aiming to maximize its
Shield value:

Sv(S) =
∑
i∈S

2λu(i)2 −
∑

i,j∈S

A(i, j)u(i)u(j)

where λ and u are the largest eigenvalue and the corresponding eigen-
vector of the adjacency matrix A containing edge probabilities; λ indi-
cates the effectiveness of a stochastic spread in the network [51]. The
algorithm works on undirected networks; we transform any network to
undirected by ignoring directions and removing duplicates.

Awareness-based Robustness Measures

We introduce the abstraction of seeder awareness regarding attacks and prob-
abilistic diffusion events; this abstraction allows us to study worst-case out-
comes. We do not presume that real-world seeders may possess each level of
awareness we postulate. We define three notions of robustness based on such
worst-case analysis, aggregating outcomes over all possible sizes of immuniza-
tion attacks, and also a notion of diffusion entropy that indicates how much
difference seeder awareness can make.

132
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

EMR

First, we presume an omniscient seeder who has access to an oracle that
predicts the outcome g of a diffusion on G as well as any immunization on g
that produces gθ. While knowing these outcomes, an omniscient seeder still
needs to take precautions.

As discussed in Section 11.2, the robustness of a deterministic undirected
network G can be expressed in terms of the largest connected component
(LCC) [177], i.e., the most extensive connected substructure that indicates the
largest possible spread (i.e., best possible outcome) of a diffusion emanating
from a node in G. When G is a directed network, the LCC-equivalent substruc-
ture is either of the largest strongly or weakly connected components [232].
Still, none of these two extreme cases generalizing the LCC concept provides
information on the maximum number of nodes a seeder can reach, because, in
a directed network the exact positioning of seeds within an LCC-like structure
matters. We denote the number of nodes that a seeder can reach in an immu-
nized live-edge instance of a directed network, gθ, with a diffusion from a seed
set S of size k, as

∑
v∈gθ

I(v, S), where I(v, S) is a binary function indicating
whether there exists a path from S to node v. Maximizing the sum amounts
to finding a maximum forest with at most k roots. Let Expected Maximum
Reach (EMR) be the expected number of nodes an omniscient seeder reaches
in G under the worst θ ∈ Θ(ℓ):

EMRG(ℓ) = min
θ∈Θ(ℓ)

Egθ∼G

 max
S:|S|≤k

∑
v∈gθ

I(v, S)

 (11.5)

Our first robustness measure aggregates EMRG(ℓ) for all values of ℓ, i.e.,
all cases of a targeted attack or node failure, normalized by network size; we
call it sum of expected maximum reach or SEMR:

SEMRG = 1
n

n∑
ℓ=1

EMRG(ℓ) (11.6)

To the best of our knowledge, EMF has not been studied hitherto. We
introduce a novel algorithm for SEMR computation in Section 11.3 and study
its efficiency in Section 11.4.

RNI

We now consider a seeder lacking knowledge of diffusion outcomes, but still
having access to an oracle that predicts which nodes will fail. The maximum
number of nodes such a seeder can expect to reach in G under immunization
strategy θ is the maximum, over all cases of S, of the expected size, over all
instances gθ ∼ G, of the number of nodes v ∈ gθ to which a path exists from S,
i.e., maxS:|S|<k Egθ∼G[

∑
v∈gθ

I(v, S)]. A strategy θ ∈ Θ(ℓ) that minimizes this
quantity yields the worst-case number of nodes a seeder reaches, even while

11.3. DIFFUSION ROBUSTNESS MEASURES 133

selecting the best S in expectation. We call this outcome Robust Network
Immunization (RNI):

RNI G(ℓ) = min
θ∈Θ(ℓ)

max
S:|S|≤k

Egθ∼G

∑
v∈gθ

I(v, S)

 (11.7)

Our second robustness measure aggregates RNI G(ℓ) for all values of ℓ,
normalized by network size. We call this measure SRNI :

SRNI G = 1
n

n∑
ℓ=1

RNI G(ℓ) (11.8)

The computation of RNI requires solving an influence maximization (IM)
problem on a graph with θ(ℓ) nodes removed for each immunization strategy
θ ∈ Θ and each value of ℓ. We carry out this operation, again building
sampled networks gθ incrementally, using the dynamic influence maximization
(DIM) algorithm [198]. DIM extends the TIM algorithm [246] for the dynamic
setting, maintaining random samples while the graph structure changes.

RIM

Last, we consider the case of an agnostic seeder who has information neither
about diffusion outcomes, nor about node failures. The best such a seeder
can do is to try to solve a problem of robust influence maximization [114].
We consider the worst-case number of nodes a seeder can expect to reach
in a stochastic network G with seed set S; that is the minimum, over all
immunization strategies θ ∈ Θ(ℓ), of the expected size, over all instances
gθ ∼ G, of the number of nodes v ∈ gθ to which a path exists from S, i.e.,
minθ∈Θ(ℓ) Egθ∼G[

∑
v∈gθ

I(v, S)]. This quantity expresses the worst-case spread
outcome from the point of view of the spreader.

For the sake of robustness, the spreader should then opt for a seed set
S that maximizes this worst-case quantity, yielding the maximum number of
nodes the spreader can expect to reach in G with a seed S under a worst-case
θ ∈ Θ(ℓ) for that S. We call this outcome Robust Influence Maximization
(RIM):

RIM G(ℓ) = max
S:|S|≤k

min
θ∈Θ(ℓ)

Eg∼G

∑
v∈gθ

I(v, S)

 (11.9)

While this quantity is inspired from the objective in of Equation 11.4
in [114], it is based on node removals rather than edge perturbation, and it
is not normalized by the optimal spread for a given gθ, as we are interested
in robustness in the absolute sense. Our third robustness measure aggregates
RIM G(ℓ) for all blocked node set sizes ℓ, normalized by network size. We call
this measure SRIM:

134
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

SRIM G = 1
n

n∑
ℓ=1

RIM G(ℓ) (11.10)

To calculate SRIM we apply a sequence of SatGreedy executions [114] with
a modified objective, removing the normalization of spread of S by the optimal
spread value under strategy θ, S∗

θ :

max
S

ρ′(S) = max
S

min
θ

σθ(S)

The convergence of SatGreedy requires that γ < 1, where γ is the max-
imum difference between the binary search upper and lower bounds and the
convergence factor (multiplier) for these bounds. If we define ρ′ as the mini-
mum over the spread function σθ(S), we undo the normalization of upper and
lower bounds, and hence of γ, which may then be larger than 1. To prevent
that, we normalize ρ by the size of the unblocked network |V |:

max
S

ρ′(S) = max
S

min
θ

σθ(S)
|V |

Further, we enhance the runtime of SatGreedy using the same dynamic
approach as for SRNI [198] to estimate spread. We also consider the base-
lines proposed in [114]: SingleGreedy selects k seeds sequentially, at each step
choosing a seed that maximizes the objective. AllGreedy finds the best seed set
for each adversary, and selects the one of these that maximizes the objective.

Overview

Our three measures form a sequence, tuning the seeder’s awareness regarding
the sampling of g and the application of an immunization strategy θ to g
by means of two choices: the order of max and min determines whether the
seeder is aware of the immunization strategy; the positioning of expectation
E indicates whether the seeder is aware of the sampling of g. Table 113
depicts the relationships among the three measures with respect to these key
properties. We observe that one case in the table is not covered by the hitherto
described measures, namely the case of a measure corresponding to an unaware
spreader, yet with a strategy chosen posterior to the sampling of g. This
measure, which we call EMinR (Expected Minimum Reach), by analogy to
the expected maximum reach, expresses the maximum number of nodes in G
that a seeder can expect to reach under such a powerful attack:

EMinFG(ℓ) = max
S:|S|≤k

Eg∼G

 min
θ∈Θ(ℓ)

∑
v∈gθ

I(v, S)

 (11.11)

11.3. DIFFUSION ROBUSTNESS MEASURES 135

We have presented all measures using a worst-case scenario. Still, such mea-
sures apply to average cases too. To that end, we need to use an additional
expectation function instead of minimization over strategies, resulting in
two possible robustness measures, briefly expressed as follows:

max
S

EθEG[σ] = max
S

EG,Θ[σ]

EΘ

[
max

S
EGθ

[σ]
]

strategy-aware spreader agnostic spreader
sampling first RNI (Eq. 11.7) RIM (Eq. 11.9)

seeds first EMR (Eq. 11.5) EMinR (Eq. 11.11)

Table 113: Relationships between robustness measures.

Computation of SEMR

To compute our novel SEMR measure for a single seed, we need to find the
expected maximum tree sizes over a sequence of networks g under each im-
munization strategy θg ∈ Θ:

Eg[{T (g \ θg(ℓ))}nℓ=1]

We consider immunization strategies θ such that the set of blocked nodes
under strategy θ for ℓ + 1 is a superset of that for ℓ, i.e., θ(ℓ) ⊂ θ(ℓ + 1).
To obtain a sequence of immunization sets θg(ℓ) for different values of ℓ on
g, it suffices to sequentially remove nodes from g. Equivalently, since we are
interested in all values of ℓ, we sequentially add nodes, in reverse. We com-
pute maximum tree sizes over several random samples g from G, with edges
pre-sampled and nodes incrementally added, according to strategy θ∗, starting
with no nodes, and average values per ℓ to get the expected tree size EMR(ℓ).
To compute the maximum tree size efficiently, we build upon the DAGGER
algorithm [281], employing a dynamic reachability index that returns nodes
reachable from any node and also supports node insertions. Given g, the in-
dex maintains a directed acyclic graph (DAG), where each node represents
a strongly connected component (SCC) in g, called graph condensation. A
node’s insertion implies the insertion of its pre-sampled incident edges. As-
sume a new edge e = (u, v) is inserted. Let s and t be the SCCs u and v
belong to, respectively. DAGGER checks whether there is a path from t to s,
using its reachability index. If there is a path, then the insertion of e merges
at least two existing SCCs. To find all SCCs to be merged, DAGGER recur-

136
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

sively traverses the path from t to s, while pruning descendants of t that do
not have a path to s.

We extend DAGGER with a query that returns a network’s maximum
tree size. Let g′ = (V ′, E′) be the DAG that corresponds to g. For each node
v′ ∈ V ′, we maintain a label v′.r as the set of nodes u′ ∈ V ′ reachable from v′:
v′.r = {u′ ∈ V ′|∃path v′ → u′} ∪ {v′}. After inserting a new node w to g, we
obtain the corresponding w′ ∈ g′, such that w′ represents the SCC w belongs
to, calculate w′.r based on the out-neighbours of w′ in g′, and propagate w′.r
to all ascendant nodes of w′. Since a new node w may result in the removal
of a SCC, we propagate a set of ids of the removed SCCs to ascendant nodes
of w′ as well. Finally, we maintain a heap of root nodes, valued by the size of
their labels. Once an update from w′ reaches a node u′ with zero in-degree,
we add u′ to the heap, or update the heap’s value if it already contains that
w′.

Algorithm 6 illustrates how we compute the SEMR measure incrementally,
by calling SEMR() call, which calls INSERT(w, H). H is a heap organizing
the nodes of DAG, ordered by the sum of reachable SCC sizes. When per-
forming a node insertion, we first perform the insertion, as explained in the
above, by the DAGGER.INSERT() query, then collect the ids of the new
node’s SCC (Line 3) and all invalidated SCCs (Line 4). Lines 5-6 calculate
the reachability of node w′, which corresponds to the new node w in the DAG.
Lines 8-11 traverse all nodes reachable from w′ in the reverse DAG (g′)T by
breadth-first search. We update the reachability label of each reverse reach-
able DAG node u′ according to the set of removed SCC’s R, and the set of
DAG nodes reachable from w′. Last, if during a traversal we reach a root
node (Lines 10-11), we insert or update the corresponding reachability value
in the heap H.

The SEMR() function in Algorithm 6 returns SEMR for a single seed.
For k seeds, in Line 19 we greedily pick k nodes from the heap H, prioritized
by marginal gain in terms of reachable nodes in g. We apply the CELF
optimization [158] while collecting top root nodes. The CELF optimization is
applicable, as (i) adding a new root to a set of selected roots does not change
the set of candidate roots, and (ii) the maximization of reachable nodes is a
submodular objective, as a special case of the IM objective.

The performance of SEMR computation depends on set union and subtrac-
tion operations (Lines 6 and 9). We implement a variant where all operations
on reachability labels are performed by a bitset data structure; this measure
reduces the time of set operations, but incurs an overhead in calculating the
heap value, as it queries single bits for each root node. More advanced set
data structures, such as Binary Decision diagrams [144], may improve effi-
ciency further.

11.3. DIFFUSION ROBUSTNESS MEASURES 137

Algorithm 6 SEMR Computation
1: function INSERT(w, H)
2: DAGGER.INSERT(w)
3: w′ ← SCC(w) ▷ w′ is a node in g′, that corresponds to SCC in g and

has a label r
4: R← a set of removed nodes from g′

5: for all v′|(w′, v′) ∈ g′ do
6: w′.r ← w′.r ∪ v′.r
7: Q← {u′|∃path w′ ⇝ u′ in (g′)T }
8: for all u′ ∈ Q do
9: u′.r ← u′.r ∪ w′.r \R

10: if ∄v′|(v′, u′) ∈ E′ then
11: H.insert(< u′, |{v ∈ g|SCC(v) ∈ u′.r}| >)
12: function SEMR
13: for all θ ∈ Θ do
14: sθ ← empty list
15: Initialize DAGGER with empty graph
16: H ← a descending heap of < key, value >
17: for all v ∈ θ.reverse() do
18: Insert(w, H)
19: v′, s← H.top() ▷ Apply CELF here for k > 1
20: sθ[ℓ] = s

21: smin ← empty list
22: smin[ℓ]← minθ sθ[ℓ]∀ℓ
23: return

∑
smin

Sampling ℓ

For the sake of scaling to larger networks, we evaluate our measures for sam-
pled values of ℓ only. As the measures present a rapid decrease in the beginning
of the ℓ range, we set a larger sampling rate for smaller ℓ values, and then
increase the sample interval geometrically. To that end, we introduce a pa-
rameter α that defines the geometric growth of the sampling rate. We sample
in steps of

ℓ ∈ {0} ∪


j∑

i=1
αi−1


⌊logα(1+n(α−1))⌋

j=2

If α = 1, we sample the complete set of ℓ values. For α > 1, we use cubic
splines [73] to fit the sampled values and thereby obtain robustness measures
for the complete range of ℓ.

138
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

Complexity Analysis

Here we analyze the complexity of the presented methods.

SEMR

An iteration of SEMR computation involves DAG maintenance, reachability
label propagation, and greedy root selection. The complexity of an edge in-
sertion that does not create a new SCC is constant; in case a new SCC is
created, the worst-case complexity is O(m′), where m′ is the running number
edges in the DAG [281]. Reachability label propagation takes O(m′2), as it
updates labels for all ancestors of a new node in the DAG, and each update
requires a set union operation on sets of size at most m′. For greedy root
selection, it traverses all roots of the DAG and calculates the total size of all
SCCs reachable from each root. As we maintain SCC sizes and a list of roots
while building the DAG, single root selection takes O(m′). We select k roots,
resulting in O(k · m′), while the CELF optimization makes it significantly
faster. With the bitset data structure, there is an additional step to calculate
the number of nodes reachable from roots. Each DAG node maintains the
number of corresponding SCCs, and a set of reachable DAG nodes. To get
the number of reachable nodes, we traverse all bits, incurring an additional
m′ factor.

To calculate the minimum over all considered immunization strategies, we
evaluate SEMR per each strategy independently, hence a |Θ| factor. Summing
up, the calculation of SEMR takes O(|Θ| · nm′(m′ + k)). Using a sampling
factor α > 1, we perform greedy selection only for sampled nodes. With
q = ⌊logα(1+n(α−1))⌋ samples, the complexity becomes O(|Θ| ·(nm′2 +qk)).

SRNI

The SRNI computation consists of sequential node insertions on the DIM
algorithm. In the worst case, we examine all available sketches per node in-
sertion [198]. The minimum number of required sketches is defined by the
bound on total weight of sketches W =

∑
g G(|g.V |+ |g.E|), where g is a sin-

gle sketch sampled from the probabilistic network G, and g.V and g.E are the
numbers of nodes and edges in the sampled sketch. After each insertion, DIM
performs sampling until W ≥ β(n + m) log n, where β is an accuracy parame-
ter. In the worst case, g contains all edges of G, while the number of samples
may grow to β log n. A single sketch may traverse all edges in G, resulting in
O(βm log n) complexity per insertion. As before, immunization strategies are
independent, yielding a total of O(|Θ| · βmn log n). The evaluation of spread
does not increase the complexity, hence neither does the α parameter.

11.4. EXPERIMENTS 139

SRIM

The computation of SRIM relies on sequential runs of a robust influence
maximization algorithm [114], and incremental maintaining of sketches by
DIM [198]. In the worst case, one run of SingleGreedy selects k seed nodes,
evaluating the spread marginal gain for each candidate seed and immuniza-
tion strategy, with O(kn|Θ|) complexity; with the runtime of DIM, it becomes
O(|Θ|n(βm + k) log n). SatGreedy repeats a similar seed selection as Single-
Greedy at each iteration of binary search with accuracy parameter γ, leading
to O(|Θ|n(βm + k) log n log 1

γ) time.

Approximation Guarantees

To estimate a maximum forest size for EMR, we select root nodes greedily.
This method achieves a (1 − 1

e) approximation guarantee on the maximum
forest size in a single MC iteration. By the Central Limit Theorem, increas-
ing the number of iterations, we obtain a (1 − 1

e) approximation guarantee
with respect to the true maximum forest size. RNI inherits the guarantees of
DIM [198]. Given a sufficient number of samples (Section 11.3), the algorithm
returns a seed set S such that σ(S) ≥

(
1− 1

e − ϵ
)

σ(S∗) with probability at
least 1− 1

n , where σ is expected spread, and S∗ is an optimal seed set.
The SatGreedy algorithm returns a seed set S′ that approximates the

original objective ρ(S) with guarantee

ρ(S′) ≥
(

1− 1
e

)
· ρ(S∗)− γ

where k is constraint on the number of seeds and γ ∈ (0, 1) is an approximation
parameter. For the guarantee to hold, γ has to be related to β as

β = 1 + ln |Θ|+ ln 1
γ

where Θ is the employed set of strategies. It is worth noting that, even with
large γ = 0.9 and only two strategies, β = 1+ln 3|Σ|/γ ≈ 2.89, i.e. SatGreedy
requires to increase the seed set size more than 2 times for its approximation
guarantee to hold. The authors set γ = 2 · 10−3 · |Σ| empirically [112], while
keeping β ≤ 2, therefore the approximation guarantee does not hold for the
experiments presented in the paper; the solution operates as a heuristic.

11.4 Experiments
Here we showcase an exhaustive experimental study on the nature and compu-
tation of probabilistic network robustness measures. In particular, we study
the computation of EMR and RIM measures, for which we have introduced

140
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

novel solutions; the computation of RNI relies on a black-box application of
the Dynamic Influence Maximization (DIM) algorithm [198], hence we con-
duct no special computation study therefore. We investigate the nature of all
three measures and study their interrelationships and semantics.

In the following we first describe our setup and datasets, then we perform
repeatability check of the results of He and Kempe, and study the performance
of the algorithm on our objective. We conclude that one of simple baselines
(Single Greedy CELF) is more suitable for calculating SRIM, and we use it in
further experiments. Next, in Section 11.4 we discuss our a comparative study
of three presented measures on various synthetic and real-world data, illus-
trating patterns of behaviour and expressiveness of the new SEMR measure
in comparison to other two. In Section 11.4, we propose a notion of diffu-
sion entropy as a difference between SEMR and SRNI. In the Section 11.4 we
show how the expressiveness of SEMR can be exploited to obtain stochastic
networks with more robust structure. In the last three sections we study the
efficiency of proposed algorithms.

Setup

We ran experiments on an Intel Xeon CPU @ 3.10GHz with 378G RAM
running Ubuntu 18.04. All algorithms are implemented in C++ and compiled
with gcc 7.4 with -O3 optimization. We set timeout 10h per one measure
computation. Runtime and timeout do not include time for the strategy set Θ
computation, as the set is equivalent for all robustness measures. We assign
edge probabilities either randomly, or uniformly. For random assignment, we
pick a value for each edge uniformly from 0 to W , where W is a parameter.
For uniform assignment, we assign a certain W value to each edge. We refer
to these two types of assignment as Random and Uniform.

Datasets

Synthetic Networks. We study power-law networks, represented by the
Barabási-Albert (BA) model, and homogeneous networks, represented by
the Gaussian Random Partition (GRP) [41] and Watts Strogatz (WS)
models. For BA, we use the algorithm of Holme and Kim [120], which ex-
tends the original Barabási-Albert model, yet use the BA label as its basis.
The algorithm randomly creates µ edges for each node in a graph, and for
created edge with a probability p adds an edge to one of its neighbors, thus
creating a triangle. GRP groups nodes so that group sizes follow a Gaussian
distribution with expected size s and variance of size equal to s/v, where v is
a shape parameter. It uses a probability value pin for edges across nodes in
the same group, and pout otherwise. WS models self-organizing small-world
systems [267], with two parameters: l indicates how many neighbors each node
is joined with in a ring; p is a probability of edge rewiring, inducing disorder.

11.4. EXPERIMENTS 141

Network |V | [·103] |E| [·103] dmax , d cl
Blogs 1.2 19.0 467, 31 0.336

Minnesota 2.6 3.3 5, 2 0.024
VK 2.8 40.8 288, 29 0.247

Advogato 6.6 47.3 947, 14 0.211
DBLP 12.6 49.7 710, 8 0.117

Brightkite 56.7 212.9 1134, 8 0.117
Gnutella 62.6 147.9 95, 5 0.007
Stanford 281.9 2312.5 38626, 16 0.597

Table 114: Real-world datasets. dmax, d is maximum and average degree, cl
is average clustering coefficient [228].

Real-world networks. We use real-world datasets of various sizes and
degree distributions: Blogs contains front-page hyperlinks between blogs dur-
ing the 2004 US election [2, 151]. DBLP is a citation network of scientific
papers [151, 160]. Advogato is a network of trust relationships in an online
community platform for free-software developers [151, 185]. Minnesota is a
road network [221]. VK is a social network with influence probabilities derived
from the content of posts published by users [171]. Brightkite is a location-
based social network [64]. Gnutella is snapshots of the Gnutella peer-to-peer
file sharing network [157]. Table 114 lists our real-world datasets.

Choice of Algorithm for RIM Computation

As a preliminary experimental choice, we study the performance of methods
for RIM calculation, including algorithms and baselines in [114]. We use the
IMM algorithm for influence maximization [246] as a non-robust baseline. We
include the SingleGreedy method with CELF optimization, proposed in [114],
and also its variant without this optimization, given that, on this non-sub-
modular problem objective, the CELF optimization affects quality.

We first check the repeatability of the results in [114] on our dataset, in-
cluding the SingleGreedy method without the CELF speedup. While our
metrics are based on Node Immunization, the methods in [114] are tested on
edge perturbation, where adversary strategies Θ imply a variation in edge
probabilities rather than node removals. We use the WS and GRP net-
works, with 20 random immunization strategies in Θ. Each strategy forms
a network with a complete set of V and E, but randomly reassigns edge
probabilities from 0.5 to 1 uniformly. Figure 111 shows our results for grow-
ing seed set size k. We confirm that SatGreedy outperforms other methods,
as reported in [114]. However, SingleGreedy without CELF achieves as
good quality as SatGreedy, albeit with a runtime drawback.

142
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

(a) GRP, Objective (b) WS, Objective (c) WS, Runtime

Figure 111: Repeatability of RIM performance under edge perturbation.
n=5000, ℓ=150. GRP: s=100, v =0.5, pin =0.02, pout =5 · 10−4. WS: p=0.3,
l=15. SatGreedy accuracy γ = 10−4.

We compare the performance of algorithms under node immunization, i.e.,
in the computation of the unaggregated RIM objective, with BA, GRP, and
WS networks. Figure 112 illustrates the results vs. graph size n, seed set size k,
and number of immunized nodes ℓ. The relative performance of algorithms is
approximately the same as before, except for that of the non-robust IMM base-
line, which does not take uncertainty into consideration and is therefore even
more disadvantaged, under node immunization, vs. algorithms that consider
adversaries. This disadvantage of IMM grows with ℓ, imprinting the signifi-
cance of using robust algorithms. SatGreedy is occasionally outperformed by
other baselines, especially on BA, while SingleGreedy is consistently leading.

Now we drop the non-robust IMM algorithm out of the comparison, and
study the performance of robust algorithms, with the DIM algorithm embed-
ded, on the runtime for computing, and value of, the aggregate SRIM robust-
ness measure on the BA network. Figure 113 shows our results for k = 50
seeds. As in Figure 112, SingleGreedy stands out in terms of objective, at the
cost of higher runtime. The difference in objective is more prominent now,
as we aggregate the measure over all values from 1 to ℓ. The runtime for
computing Θ is negligible, reaching 4s for the largest network.

These results indicate that SingleGreedy (without CELF) offers the best ef-
fectiveness, but significantly worse efficiency. SingleGreedy with CELF matches
the performance of SingleGreedy under immunization, matches or outperforms
that of SatGreedy, is more efficient, and does not require any accuracy pa-
rameter γ, as SatGreedy does. Ergo, as we are interested in robustness under
node removals, we opt for SingleGreedy with CELF in the following.

11.4. EXPERIMENTS 143

(a) BA (b) BA (c) BA

(d) GRP (e) GRP (f) GRP

(g) WS (h) WS (i) WS

Figure 112: RIM under node immunization. BA (n=5 · 103, ℓ=50, k =100,
µ=2), WS (n=5 · 103, ℓ=200, k =70), GRP (n=3 · 103, ℓ=180, k =90).
W =0.1, SatGreedy: γ =10−4.

Measure relationships

We now study the relation between measures on small networks, and their sen-
sitivity to the set of immunization strategies, using two homogeneous networks
(Minnesota and GRP) and two power-law networks (Blogs and VK).

Figure 114a plots plain EMR, RNI, and RIM values, without aggregation,
vs. ℓ on Minnesota. Values decrease gradually, revealing some irregularities
of graph structure in the middle range of ℓ. EMR and RNI follow a similar
pattern, while RIM differs from both. For instance, from ℓ = 1000 to 2000
EMR and RNI present two abrupt drops at the same value of ℓ. RIM has more,
smaller irregularities, but they do not follow EMR and RNI. Figures 114b
and 114c present the summed measures (SEMR, SRNI, and SRIM) vs. seed

144
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

(a) Runtime of SRIM baselines (b) Objective of SRIM baselines

Figure 113: SRIM on BA, p=0.4, µ=10, W =0.3, k =50.

(a) k = 50, W = 0.8 (b) W = 0.5 (c) k = 50

Figure 114: Measures on Minnesota road network.

set size and influence probabilities W , respectively. The difference between
measures grows, especially with the size of seed set. Later we will see that a
similar trend with seed set size appears in power-law networks (Figures 117c
and 119).

Figure 115: Effect of 7 immunization strategies. Minnesota road network,
W =0.5, k =50, Random.

Figure 115 presents a decomposition of measures: instead of taking a min-
imum over all strategies, we plot the expected influence per strategy, with the

11.4. EXPERIMENTS 145

seed set selected by each algorithm. We observe that EMR and RNI follow the
same trend also for each strategy separately. This is especially conspicuous
with NetShield, which shows poor performance in its immunization objective
for small values of ℓ, but swiftly improves in the middle range; it then be-
comes the most effective strategy for a short ℓ range, but looses that position
to PageRank. Remarkably, results for RNI presents the same outline, but
scaled to a smaller values of active nodes. On the other hand, RIM exhibits a
different behaviour, as all strategies mostly produce the same response to the
selected seeds. This result illustrates the difference of RIM from the other two
measures: RIM is based on the worst case among the complete set of strate-
gies by nature, hence causes the selected seeds to perform almost equally well
on any immunization outcome.

(a) EMR vs RNI (b) EMR vs RIM (c) RNI vs RIM

(d) EMR vs RNI (e) EMR vs RIM (f) RNI vs RIM

Figure 116: JS divergence of measures per strategy.

In Figure 116, we take another view on decomposition of measures: We
plot the Jensen-Shannon divergence for each pair of measure distributions
over ℓ, and for each strategy, with varying k and W . For example, one
point on Figure 116a shows JSD(EMR(ℓ) ||RNI(ℓ)) for a specific k. JSD
values for EMR vs RNI are much smaller than for other two pairs, and
smoothly converge to zero; values are larger for more effective immunization
strategies. On the other hand, the divergence of RIM from both EMR
and RNI is unstable and non-monotonic, with diverse trends for different

146
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

strategies. For example, for Degree and NetShield, JSD grows significantly
with number of seeds k, while for Random it drops.

(a) Deltas (b) Measures vs. ℓ (c) Sums vs. k

Figure 117: Dependency of measures on VK social network.

Figure 117a plots the differences EMR-RNI and RNI-RIM vs. ℓ on the
VK network. RNI-RIM has a convex shape with a maximum in the middle-
range ℓ, while EMR-RNI is almost zero in the whole range. This behavior
differs from the one we observed with the BA and DBLP networks, where
there is a peak on EMR-RNI. Figure 117b plots non-aggregate measure values
for k = 40. RNI is very close to EMR along the whole range of ℓ; on the
other hand, RNI-RIM also peaks close to the maximum curvature of lines.
Figure 117c shows that the effect becomes stronger with larger k, aggregating
over all ℓ values: SRNI remains close to SEMR, while SRIM diverges from the
others; this divergence implies that, on power-law networks, knowledge about
immunization, gained when moving from RIM to RNI, is more valuable than
knowledge about the stochastic edge outcome, gained when moving from RNI
to EMR.

(a) k =50, W =0.8 (b) W =0.5 (c) k =50

Figure 118: Dependency of measures, Blogs network. Random.

Figures 118 and 119 show the proximity among the three aggregate mea-
sures on the Blogs and GRP networks. On the power-law Blogs network, the
trend is similar to VK, with RNI close to EMR. However, on the homoge-
neous GRP network, RNI is close to RIM for the whole spectrum of network

11.4. EXPERIMENTS 147

Figure 119: Dependency on network parameters. GRP. n=2500, s=100,
pin =0.05, pout =5 · 10−4, k =10, W =0.3, Random.

(a) Dr, Minnesota,
k = 10

(b) Peak Loca-
tion, BA (c) D vs. ∆, BA

(d) Fixed-size network,
BA

Figure 1110: Local maximum of D; BA parameters: n=1000, p=0.4, µ=10;
(b): k =5; (d): k =1, Θ={Degree}.

shape parameters. We conclude that network topology determines what gain
of knowledge matters most; on a homogeneous network, knowledge about a
probabilistic outcome is more valuable than knowledge about immunization.

Another interesting feature is the shape of the tail of distribution (Fig-
ures 115, 117b and 118a). There exists a value of ℓ = ℓ′, such that all three
measures converge to the value of k or ℓ grows towards ℓ′, but for ℓ > ℓ′ RIM
drops to 0, while others remain at the value of k. Notably, the shape of the
drop of RIM is concave, with a gap of first derivative. The region ℓ > ℓ′

corresponds to the case where immunization blocks all nodes by at least one
strategy for any seed set. RIM will always select that strategy. However, for
EMR and RNI, seeds are selected after the immunization strategy, therefore,
for any strategy there are at least k non-blocked nodes.

EMR vs RNI: the diffusion entropy

As we discussed in Section 11.3, the EMR and RNI measures both represent
cases in which the immunizer has to prepare for the worst-case, i.e., the case
in which the spreader is aware of the immunizer’s actions. In other words,
both these measures correspond to robust immunization problems. Their dif-
ference lies in the fact that, under EMR, the spreader is also aware of the
probabilistic network outcome. Thus, the difference between these two prob-
abilistic network robustness measures expresses the surprise effect or, so to

148
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

speak, negative entropy that a probabilistic diffusion outcome can present to
the immunizer; it shows how much worse the spread can be in the case of a
spreader aware of probabilistic outcomes in comparison to the best guess of a
spreader unaware of such outcomes. We study the impact of this difference in
more detail, using uniform probability assignment so as to focus on structural
effects. We consider the absolute difference D among the two measures; and
also the relative difference with respect to RNI, Dr.

D = EMR − RNI, Dr = EMR − RNI
RNI

(11.12)

Figure 1110a shows the surface of Dr for different values of ℓ and W on
the Minnesota network. Dr is larger for smaller number of removed nodes ℓ,
and drops with larger edge probabilities. Still, it is not monotonic vs. W ; it
obtains a maximum value around W = 1.5, and the peak is more explicit with
smaller ℓ. Figure 1110b shows that this non-monotonic behavior of Dr also
appears with respect to ℓ on a BA network, and indicates exactly where the
peak is located. Compared to Figure 1110c, where peaks are presented only
for a single seed, we see that on Figure 1110b the peak has larger width.

We have observed that D also relates to the relative marginal gain seeds
addition by the spreader. We define δθi

(ℓ) as the relative marginal gain of the
second seed for any strategy θi ∈ Θ under ℓ immunized nodes:

δθi
(ℓ) =

maxS:|S|=1 σθi(ℓ)(S)−maxS:|S|=2 σθi(ℓ)(S)
maxS:|S|=1 σθi(ℓ)(S)

We then calculate a new quantity ∆(ℓ) as the maximum differential quotient
of δ over all strategies for each ℓ:

∆(ℓ) = max
θi∈Θ
{δθi

(ℓ)− δθi
(ℓ− 1)}

Figure 1110c juxtaposes D and ∆, plotted with moving average smoothing.
Remarkably, their two peaks align, with a slight shift to the right for ∆. This
finding implies that, on BA networks, the values of ℓ for which the network
ceases to be strongly centralized, hence ∆ flattens out, would also cause the
highest surprise to an immunizer.

We exploit this observation to generate networks of enhanced robustness:
we fix size to 1000 nodes, yet first generate a network of larger size and then
remove superfluous nodes by the Degree strategy. We call the amount of nodes
first added and then removed shift. Figure 1110d plots D vs. shift. Shifting
improves network robustness in terms of D; we create networks in which a
seeder has the potential to perform surprisingly well against an immunizer.
The lower subfigure plots the number of edges in the obtained network; as
there is no correlation between the peak of D and number of edges, the peak
must be attributed to the network’s structure.

11.4. EXPERIMENTS 149

We also plot D as a colored interval vs. ℓ, on DBLP, while varying edge
probabilities. Figure 1111a shows the results. D is the largest (i.e., widest)
for middle-range W values. Figure 1111b illustrates this fact for a single
ℓ. This non-monotonic dependence of D on weights suggests controlling a
network’s robustness by tuning edge weights.

(a) EMR vs RNI; color indicates difference. (b) D (SEMR-SRNI)

Figure 1111: The difference between EMR and RNI on DBLP. α = 1.075, k =
50, β = 40, Random.

(a) Original (b) SRIM-based (c) SEMR-based

Figure 1112: Robust BA networks

Case Studies of Network Robustness

We provide examples of robust networks using the local search heuristic of [230],
which randomly samples pairs of edges, e.g., pair {(v1, u1), (v2, u2)}, and
rewires them to {(v1, u2), (v2, u1)} if that leads to a higher robustness measure.
We experiment with SRIM and SEMR, since SRNI exhibits similar behavior
to SEMR (see Section 11.4). The sampling proceeds until |E| iterations bring
no change.

We experiment with a random BA network of 100 nodes, uniform edge
probability of 0.5, and 2 seeds. Figure 1112 shows the original network
(non-robust), and two networks obtained by the aforementioned procedure

150
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

for SRIM and SEMR, respectively. Colors indicate similar node degrees, blue
for larger, green for medium, and red for smaller. We plot the networks
using the Fruchterman Reingold algorithm [25]. We note that the network
targeting SEMR has a layered onion-like structure, similar to robust static
networks [110], while the other two networks do not show evident patterns.

(a) BA, SEMR-based (b) BA, SRIM-based (c) VK, Ego

Figure 1113: Effect of rewiring (a,b), node removals (c)

Figure 1113 illustrates all robustness values for the three networks through-
out the algorithm’s successful iterations. Figure 1113a shows the case tar-
geting SEMR; as expected, SEMR grows monotonically, while SRNI is al-
most monotonic. Contrariwise, SRIM is oscillating, albeit with a rising
trend. Due to this oscillation, the algorithm targeting SRIM does not find
good changes in the network, as we witness on Figure 1113b, in which there
are only 16 successful iterations in total, and the robustness improvement
is minor. This result highlights SEMR as a more expressive measure.

In another approach, rather than rewiring edges, we incrementally re-
move nodes that lead to the highest marginal gain in SEMR. We apply this
approach to ego networks of VK with real-world influence probabilities, as
in [171]. The ego network of node v contains v (ego), adjacent nodes of
v (alters), and all edges between them. Ego networks are useful in un-
derstanding micro-level structures of social networks [12]. We sample ego
networks of size between 10 and 50 nodes, having from 10 to 300 edges.
Since ego networks differ in size and shape, we normalize results by the
value of SEMR at ℓ = 0. Figure 1113c presents our results. The solid line
is averaging over 100 samples, and the shaded region represents standard
deviation; the x-axis is normalized by the total number of nodes in a net-
work. We see that applying the greedy node removal leads to an average
∼ 10% of increase of SEMR after removing ∼ 30% of nodes, and a positive
improvement for any number of nodes until ∼ 50% of all nodes removed,
while other measures are less affected.

11.4. EXPERIMENTS 151

SEMR Computation Efficiency

Here, we study the efficiency in computing SEMR, which is the most novel
of the measures we propose. The implementation is based on the DAGGER
reachability index [281]. We compare the runtime of S-Dagger, which uses a
set data structure, and BIT-Dagger, which uses a bitset data structure, to the
following baselines, which progressively introduce algorithm features:

• DFS finds the maximum tree by depth-first search for each node in each
MC iteration;

• TD-SCC performs a deterministic graph condensation (i.e., finds SCCs
that form a directed acyclic graph (DAG)) and runs a top-down breadth-
first search from each root node in the DAG to find the maximum tree;

• BU-SCC performs a deterministic graph condensation with bottom-up
reachability labelling, similarly to S-Dagger, but without a dynamic
reachability index;

• DynSCC performs graph condensation with dynamic bottom-up label-
ing, but instead of the Dagger index, it maintains DAGs naively, de-
creasing ℓ and rerunning Tarjan’s algorithm [248] for each affected DAG
node.

We study performance on BA with growing size n and Minnesota with
growing weigths W , using the Degree immunization strategy and 10 iterations
to estimate runtimes. Figure 1114 presents our results. The immunization
runtime for Θ = {Degree} is trivial.

(a) BA, W =0.3, p=0.4, µ=10. (b) Minnesota road network

Figure 1114: EMR computation. Θ = {Degree}, k =1.

DAGGER algorithms achieve a significant runtime improvement in com-
parison to baselines. BA (Figure 1114a) is a denser, power-law network, while
Minessota (Figure 1114b) is a sparse homogeneous network. In both cases,
DFS is the worst approach; graph condensation significantly improves run-
time. On Minessota, the runtime of TD-SCC and BU-SCC even improves as

152
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

weight W grows, as more SCCs appear. On this sparse network, the efficient
maintenance of SCCs is crucial. DynSCC maintains SCCs less efficiently than
DAGGER, hence its runtime deteriorates as W grows. BIT-Dagger is less ef-
ficient than S-Dagger on the sparse graph, though more efficient on the dense
power-law network, as traversing the labels of each root node and retrieving
SCC sizes corresponding to reachable nodes is much less costly for sets than
bitstrings. On a sparse graph, the bitset data structure incurs a large over-
head traversing sparse bit strings. Still, on a dense graph, the bitset structure
compensates by significantly more efficient set operations. Henceforward, we
use S-Dagger as the default option.

(a) Minnesota (b) Minnesota

(c) DBLP (d) DBLP (e) # of sampled ℓ

Figure 1115: Performance vs. α; R2 averaged over adversaries, Random prob;
Minnesota W =0.7, k =10; DBLP W =0.5, k =50; Immunization time 2s on
Minnesota, 82s on DBLP.

Sampling Accuracy

We now investigate the accuracy of our methods using the sampling approach
of Section 11.3. Figure 1115 shows the effect of the α parameter on per-
formance, on Minnesota and DBLP networks (power-law and homogeneous,
respectively). As an accuracy measure, we use the coefficient of determina-
tion R2 between measures calculated for each value of ℓ (observation) and
measures calculated using cubic splines over sampled values of ℓ (model). On
the DBLP dataset, SRIM does not terminate for α = 1, so we use a fitted
model for α = 1.01 as ground truth. On both networks, α increasing from 1
to 1.075 does not affect the accuracy of fit significantly, even while it allows

11.4. EXPERIMENTS 153

the runtime of all algorithms to drop rapidly. Yet accuracy drops for α = 1.1
on Minnesota and α = 1.2 on DBLP. Given these results, we select α = 1.075
as a default value in the following.

Scalability

(a) Dense BA, p=0.9, W =0.1, µ=20,
k =30, Uniform

(b) Sparse BA, p=0.2, W =0.1, µ=3,
k =30, Random

(c) Dense GRP, W =0.6, k =50, s=60,
v =0.5, pin =0.015, pout =5 · 10−4, Rand.

(d) Sparse GRP, W =0.1, k =50, s=40,
v =0.5, pin =0.01, pout =10−4, Random

Figure 1116: Scalability on synthetic networks. α = 1.075.

We investigate the effect of sparsity of diffusion on the performance of
algorithms. Figure 1116 shows our results. Notably, in networks where
the fraction of active nodes is close to 1, the efficiency of SEMR is very
low, and it becomes the slowest out of all three algorithms. At the same
time, SRNI and SRIM perform similarly. In order to deal with such high-
density networks, we switch to the BIT-Dagger implementation of SEMR,
that leads to more scalable runtime growth than S-Dagger (Figure 1116c).
The violet line represents the immunization time, common for all measures.

Last, Figure 1117 shows runtime and aggregate measures normalized by
n for larger networks. Our three measures present a consistent order, while

154
CHAPTER 11. ON THE ROBUSTNESS OF CASCADE DIFFUSION

UNDER NODE ATTACKS

their runtimes depend on the density and size of networks. Advogato has
much higher ratio of active nodes, so SEMR performs poorly. In reverse, in
Brightkite the relative number of active nodes is small, so SEMR is faster
than other two measures. DBLP has a larger fraction of active nodes than
Brightkite and Gnutella, yet its runtime keeps low, due to its more flat struc-
ture, i.e., smaller edge density and maximum degree. We also compare relative
difference of SEMR vs SRNI, and SRNI vs SRIM. Advogato shows a larger
increase of spread as the spreader becomes aware of the immunization strat-
egy (i.e., from SRIM to SRNI); on Gnutella the information about particular
spread outcome brings slightly more profit. On the other networks the two dif-
ferences appear very similar. For the Stanford network, SRNI and SRIM did
not terminate within 10h for W = 0.5 and α = 1.075, hence we decreased the
problem complexity by setting W = 0.1 and α = 1.2, therefore the reported
fraction of active nodes is low.

(a) Robustness (b) Runtime

Figure 1117: Scalability of larger networks. W =0.5, Random, k =100,
α=1.075; on Stanford: W =0.1, α=1.2

11.5 Conclusions
We introduced three aggregate measures that evaluate the diffusion robustness
of probabilistic networks. We anchor these measures on a spreader who or-
chestrates an Independent Cascade diffusion under node failure attacks. Each
measure is based on a notion of worst-case maximum expected spread. We
introduced efficient algorithms to calculate these measures and sample-based
versions thereof that enable their computation on realistic networks of up to
105 nodes. Our experimental study determined that, on scale-free networks,
measures sharing the same notion of seeder awareness regarding the adver-
sarial attack are closer, while those sharing the same notion of awareness
regarding the network instance are closer on homogeneous networks. Our
results provide tools for assessing the robustness of real-world probabilistic
networks, and offer guidelines on how to design robust networks and enhance
the robustness of existing ones.

Bibliography

[1] R. Aboolian, O. Berman, and D. Krass. Competitive facility location and design
problem. European Journal of Operational Research, 182(1):40–62, 2007. 22

[2] L. A. Adamic and N. Glance. The political blogosphere and the 2004 U.S.
election: Divided they blog. In Proceedings of the 3rd International Workshop
on Link Discovery, pages 36–43, 2005. 141

[3] A. Adiga, C. J. Kuhlman, H. S. Mortveit, and A. Vullikanti. Sensitivity of
diffusion dynamics to network uncertainty. Journal of Artificial Intelligence
Research, 51:207–226, 2014. 129

[4] R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding minimum-
cost flows by double scaling. Mathematical programming, 53(1-3):243–266, 1992.
11

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory. Algo-
rithms, and Applications, 526, 1993. 10, 11

[6] R. K. Ahuja, M. Kodialam, A. K. Mishra, and J. B. Orlin. Computational
investigations of maximum flow algorithms. European Journal of Operational
Research, 97(3):509 – 542, 1997. 11

[7] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex
networks. Nature, 406(6794):378, 2000. 124, 126

[8] S. Alumur and B. Y. Kara. A new model for the hazardous waste location-
routing problem. Computers & Operations Research, 34(5):1406–1423. 22

[9] American Statistical Association. ASA Statement on the Role of Statistics in
Data Science. AMSTATNEWS. https://magazine.amstat.org/blog/2015/
10/01/asa-statement-on-the-role-of-statistics-in-data-science/,
2015. Online; accessed 20 January 2019. 3

[10] E. Anshelevich, D. Chakrabarty, A. Hate, and C. Swamy. Approximability
of the firefighter problem: Computing cuts over time. Algorithmica, 62(1-2):
520–536. 3

[11] C. Araz, H. Selim, and I. Ozkarahan. A fuzzy multi-objective covering-based ve-
hicle location model for emergency services. Computers & Operations Research,
34(3):705–726, 2007. 22

155

https://magazine.amstat.org/blog/2015/10/01/asa-statement-on-the-role-of-statistics-in-data-science/
https://magazine.amstat.org/blog/2015/10/01/asa-statement-on-the-role-of-statistics-in-data-science/

156 BIBLIOGRAPHY

[12] V. Arnaboldi, M. Conti, M. L. Gala, A. Passarella, and F. Pezzoni. Ego network
structure in online social networks and its impact on information diffusion.
Computer Communications, 76:26–41, 2016. 150

[13] L. M. Ausubel, P. Milgrom, et al. The lovely but lonely vickrey auction. Com-
binatorial auctions, 17:22–26, 2006. 28

[14] Y. Aviv and A. Pazgal. A partially observed markov decision process for dy-
namic pricing. Management science, 51(9):1400–1416, 2005. 29

[15] H. Aziz, S. Gaspers, S. Mackenzie, and T. Walsh. Fair assignment of indivisible
objects under ordinal preferences. Artificial Intelligence, 227:71–92, 2015. 81

[16] M. Babaioff, S. Dughmi, R. Kleinberg, and A. Slivkins. Dynamic pricing with
limited supply. ACM Transactions on Economics and Computation (TEAC), 3
(1):1–26, 2015. 27, 28

[17] M. B. Baig and L. Akoglu. Correlation of node importance measures: An
empirical study through graph robustness. In WWW Conference Companion,
pages 275–281, 2015. 131

[18] S. R. Balseiro, D. B. Brown, and C. Chen. Dynamic pricing of relocating
resources in large networks. ACM SIGMETRICS Performance Evaluation Re-
view, 47(1):29–30, 2019. 29

[19] N. Bansal and M. Sviridenko. The Santa Claus problem. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing, pages 31–40, 2006. 81

[20] A.-L. Barabási. Network science. Cambridge university press, 2016. 126, 127

[21] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social influence propagation
models. Knowledge and Information Systems, 37(3):555–584. 38, 114

[22] J. K. Barker and R. E. Korf. Limitations of Front-To-End Bidirectional Heuris-
tic Search. In Proceedings of the 29th AAAI Conference on Artificial Intelli-
gence, pages 1086–1092, 2015. 24

[23] S. Barman and S. K. K. Murthy. Approximation algorithms for maximin fair
division. In Proceedings of the 2017 ACM Conference on Economics and Com-
putation, pages 647–664, 2017. 81

[24] S. Barman, G. Ghalme, S. Jain, P. Kulkarni, and S. Narang. Fair division of in-
divisible goods among strategic agents. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1811–1813,
2019. 81

[25] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for
exploring and manipulating networks. In International AAAI Conference on
Weblogs and Social Media, 2009. 84, 150

[26] B. Behsaz, M. R. Salavatipour, and Z. Svitkina. New approximation algorithms
for the unsplittable capacitated facility location problem. Algorithmica, 75(1):
53–83, 2016. 22

BIBLIOGRAPHY 157

[27] O. Berman, D. Krass, and Z. Drezner. The gradual covering decay location
problem on a network. European Journal of Operational Research, 151(3):474–
480, 2003. 22

[28] O. Berman, V. Verter, and B. Y. Kara. Designing emergency response networks
for hazardous materials transportation. Computers & operations research, 34
(5):1374–1388, 2007. 22

[29] D. P. Bertsekas. A new algorithm for the assignment problem. Mathematical
Programming, 21(1):152–171, 1981. 11

[30] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview.
In Proceedings of 1995 34th IEEE Conference on Decision and Control, vol-
ume 1, pages 560–564. 1995. 18

[31] S. Bird, E. Klein, and E. Loper. NLP with Python. O’Reilly, 2009. 117

[32] G. Bitran and R. Caldentey. An overview of pricing models for revenue manage-
ment. Manufacturing & Service Operations Management, 5(3):203–229, 2003.
26

[33] I. Bogunovic. Robust protection of networks against cascading phenomena.
Master’s thesis, Department of Computer Science, ETH Zürich, 2012. 127

[34] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors
with subword information. CoRR, abs/1607.04606, 2017. 117

[35] E. Bokányi and A. Hannák. Ride-share matching algorithms generate income
inequality. CoRR, abs/1905.12535v1, 2019. 78, 79

[36] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence
in nearly optimal time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 946–957. 2014. 40

[37] A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive influence
in social networks. In Internet and Network Economics - 6th International
Workshop, pages 539–550, 2010. 129

[38] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceed-
ings of the 17th International Conference on Data Engineering, pages 421–430,
2001. 3

[39] A. Boskovic, Q. Chen, D. Kufel, and Z. Zhou. Online learning and matching
for resource allocation problems. CoRR, abs/1911.07409, 2019. 3, 16, 33

[40] M. K. Boujelben, C. Gicquel, M. Minoux, M. Kchaou Boujelben, C. Gicquel,
and M. Minoux. A MILP model and heuristic approach for facility location
under multiple operational constraints. Computers & Industrial Engineering,
98:446–461. 22, 23

[41] U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering
algorithms. In European Symposium on Algorithms, pages 568–579, 2003. 108,
140

158 BIBLIOGRAPHY

[42] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. 90

[43] N. E. Brunk, L. S. Lee, J. A. Glazier, W. Butske, and A. Zlotnick. Molecular
jenga: the percolation phase transition (collapse) in virus capsids. Physical
Biology, 15(5):056005, 2018. 124

[44] C. Budak, D. Agrawal, A. E. Abbadi, and A. El Abbadi. Limiting the spread
of misinformation in social networks. In Proceedings of the 20th international
conference on World wide web, pages 665–674. 2011. 38

[45] E. Budish. The combinatorial assignment problem: approximate competitive
equilibrium from equal incomes. In Proceedings of the Behavioral and Quan-
titative Game Theory - Conference on Future Directions, page 74:1, 2010.
81

[46] R. Burkard, M. Dell’Amico, and S. Martello. Assignment problems, revised
reprint, volume 106. Siam, 2012. 10, 11, 12

[47] J. C. Castillo, D. Knoepfle, and G. Weyl. Surge pricing solves the wild goose
chase. In Proceedings of the 2017 ACM Conference on Economics and Compu-
tation, page 241242, 2017. 28

[48] D. Chakrabarty, Y. T. Lee, A. Sidford, and S. C. Wong. Subquadratic sub-
modular function minimization. In H. Hatami, P. McKenzie, and V. King,
editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 1220–1231. 2017. 17

[49] H. A. Chaudhari, J. W. Byers, and E. Terzi. Putting data in the driver’s seat:
Optimizing earnings for on-demand ride-hailing. In Proceedings of the 11th
ACM International Conference on Web Search and Data Mining, pages 90–98,
2018. 28, 78, 79, 95

[50] L. Chayes, R. H. Schonmann, et al. Mixed percolation as a bridge between
site and bond percolation. The Annals of Applied Probability, 10(4):1182–1196,
2000. 127

[51] C. Chen, H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad, C. Falout-
sos, and D. H. Chau. Node immunization on large graphs: Theory and algo-
rithms. IEEE Transactions on Knowledge and Data Engineering, 28(1):113–
126, 2016. 101, 102, 107, 120, 127, 130, 131

[52] F. Chen, H. Lin, Y. Gao, and D. Lu. Capacity constrained maximizing bichro-
matic reverse nearest neighbor search. Expert Systems with Applications, 43:
93–108, 2016. 40, 51

[53] H. Chen, Y. Jiao, Z. T. Qin, X. Tang, H. Li, B. An, H. Zhu, and J. Ye. InBEDE:
Integrating contextual bandit with TD learning for joint pricing and dispatch
of ride-hailing platforms. In Proceedings of the 2019 IEEE International Con-
ference on Data Mining, 2019. 27, 28, 29

BIBLIOGRAPHY 159

[54] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1029–1038. 2010. 22

[55] W. Chen, L. V. S. Lakshmanan, and C. Castillo. Information and Influence
Propagation in Social Networks. Synthesis Lectures on Data Management. Mor-
gan & Claypool Publishers, 2013. 128, 129

[56] W. Chen, T. Lin, Z. Tan, M. Zhao, and X. Zhou. Robust influence maximiza-
tion. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 795–804, 2016. 125, 129

[57] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long. Optimal
Location Queries in Road Networks. ACM Transactions on Database Systems,
40(3):17:1—-17:41. 3, 22, 23, 49, 51

[58] J. Cheng, L. A. Adamic, P. A. Dow, J. Kleinberg, and J. Leskovec. Can Cas-
cades be Predicted? In Proceedings of the 23rd International Conference on
World Wide Web, pages 925–936, 2014. 114

[59] S. Cheng and Y. Mao. Restricted max-min fair allocation. In 45th Inter-
national Colloquium on Automata, Languages, and Programming, pages 37:1–
37:13, 2018. 81

[60] C.-I. Chiang, M.-J. Hwang, and Y.-H. Liu. An alternative formulation for
certain fuzzy set-covering problems. Mathematical and computer modelling, 42
(3):363–365, 2005. 22

[61] W.-C. Chiang, J. C. Chen, and X. Xu. An overview of research on revenue man-
agement: current issues and future research. International journal of revenue
management, 1(1):97–128, 2007. 26, 27

[62] Chicago Data Portal. Taxi trips. https://data.cityofchicago.org/
Transportation/Taxi-Trips/wrvz-psew, 2019. Online; accessed 6 August
2019. 82, 83

[63] Chicago Data Portal. Census Boundaries. https://
data.cityofchicago.org/Facilities-Geographic-Boundaries/
Boundaries-Census-Tracts-2010/5jrd-6zik, 2019. Online; accessed 6
August 2019. 83, 84

[64] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement
in location-based social networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1082–
1090, 2011. 141

[65] R. Cohen, S. Havlin, and D. Ben-Avraham. Efficient immunization strategies
for computer networks and populations. Physical review letters, 91(24):247901,
2003. 131

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Census-Tracts-2010/5jrd-6zik
https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Census-Tracts-2010/5jrd-6zik
https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Census-Tracts-2010/5jrd-6zik

160 BIBLIOGRAPHY

[66] Constantinos Daskalakis. 6.896 Topics in Algorithmic Game Theory. Lecture
Notes. https://people.csail.mit.edu/costis/6896sp10/lec2.pdf, 2010.
Online; accessed 6 August 2019. 41

[67] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey. The Uncapacitated Facility
Location Problem. Discrete Location Theory, pages 119–171, 1990. 50

[68] P. Crucitti, V. Latora, and M. Marchiori. Model for cascading failures in com-
plex networks. Physical Review E, 69(4):045104, 2004. 125, 127

[69] W. Cui, X. Gong, C. Liu, D. Xu, X. Chen, D. Fang, S. Tang, F. Wu, and
G. Chen. Node Immunization with Time-Sensitive Restrictions. Sensors, 16
(12):2141. 40, 101, 103, 110, 113

[70] G. Dai, J. Huang, S. M. Wambura, and H. Sun. A balanced assignment mech-
anism for online taxi recommendation. In 18th IEEE International Conference
on Mobile Data Management, pages 102–111, 2017. 42, 78, 79

[71] J. Dai, B. Yang, C. Guo, C. S. Jensen, and J. Hu. Path cost distribution
estimation using trajectory data. Proceedings of the VLDB Endowment, 10(3):
85–96. 25

[72] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. Activity analysis of production and allocation, 13:339–347, 1951.
14

[73] C. de Boor. A Practical Guide to Splines. Springer-Verlag GmbH, 2001. 137

[74] K. Deng, S. W. Sadiq, X. Zhou, H. Xu, G. P. C. Fung, and Y. Lu. On group
nearest group query processing. IEEE Transactions on Knowledge and Data
Engineering, 24(2):295–308, 2012. 49

[75] U. Derigs. A shortest augmenting path method for solving minimal perfect
matching problems. Networks, 11(4):379–390, 1981. 9, 10, 52, 55

[76] E. W. Dijkstra et al. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959. 24

[77] J. Djolonga and A. Krause. Differentiable learning of submodular models. In
Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, pages 1014–1024, 2017. 17

[78] D. Donoho. 50 years of data science. Journal of Computational and Graphical
Statistics, 26(4):745–766, 2017. 3

[79] R. Durrett. Some features of the spread of epidemics and information on a
random graph. Proceedings National Academy of Sciences, 107(10):4491–4498,
2010. 127

[80] J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:
449–467, 1965. 9

https://people.csail.mit.edu/costis/6896sp10/lec2.pdf

BIBLIOGRAPHY 161

[81] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Combinatorial Optimization Eureka, You Shrink!,
19(2):248–264, 1972. 10

[82] W. Ellens and R. E. Kooij. Graph measures and network robustness. CoRR,
abs/1311.5064, 2013. 124

[83] W. Elmaghraby and P. Keskinocak. Dynamic pricing in the presence of inven-
tory considerations: Research overview, current practices, and future directions.
Management science, 49(10):1287–1309, 2003. 26

[84] R. Farahani and M. Hekmatfar. Facility location: concepts, models, algorithms
and case studies. Springer Science & Business Media, 2009. 3, 16, 21, 26, 49,
50

[85] M. C. S. Felice, D. P. Williamson, and O. Lee. A Randomized O(log n)-
Competitive Algorithm for the Online Connected Facility Location Problem.
Algorithmica, 76(4):1139–1157, 2016. 22

[86] L. Ford and D. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956. 8, 9

[87] D. Fotakis and C. Tzamos. Strategyproof facility location for concave cost func-
tions. In Proceedings of the fourteenth ACM conference on Electronic commerce,
pages 435–452. 2013. 22

[88] L. Foti, J. Lin, and O. Wolfson. Optimum versus nash-equilibrium in taxi
ridesharing. GeoInformatica, pages 1–29, 2019. 41, 78

[89] C. Frey, A. Zufle, T. Emrich, and M. Renz. Efficient information flow maxi-
mization in probabilistic graphs. IEEE Transactions on Knowledge and Data
Engineering, 30(5):880–894, 2018. 127

[90] S. Fujishige, T. Hayashi, and S. Isotani. The minimum-norm-point algorithm
applied to submodular function minimization and linear programming. http:
//www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1571.pdf, 2006. Online;
accessed 7 February 2020. 17

[91] S. Funke, A. Nusser, and S. Storandt. Placement of loading stations for electric
vehicles: No detours necessary! Journal of Artificial Intelligence Research, 53:
633–658, 2015. 22, 25, 26

[92] B. Gamlath, S. Kale, and O. Svensson. Beating greedy for stochastic bipartite
matching. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2841–2854. 2019. 17

[93] A. Gandini. The rise of coworking spaces: A literature review. Ephemera :
Theory and Politics in Organization, 15(1):193–205, 2015. 71

[94] J. Garg and S. Taki. An improved approximation algorithm for maximin shares.
CoRR, abs/1903.00029, 2019. 81

[95] R. Geisberger, D. Luxen, S. Neubauer, P. Sanders, and L. Volker. Fast detour
computation for ride sharing. arXiv preprint arXiv:0907.5269, 0907.5269:5. 25

http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1571.pdf
http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1571.pdf

162 BIBLIOGRAPHY

[96] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing in large
road networks using contraction hierarchies. Transportation Science, 46(3):
388–404, 2012. 25

[97] A. Glaschenko, A. Ivaschenko, G. Rzevski, and P. Skobelev. Multi-agent real
time scheduling system for taxi companies. In Proceedings of the 8th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pages 29–36,
2009. 81

[98] G. A. Godfrey and W. B. Powell. An adaptive dynamic programming algorithm
for dynamic fleet management, I: single period travel times. Transportation
Science, 36(1):21–39, 2002. 80

[99] G. A. Godfrey and W. B. Powell. An adaptive dynamic programming algorithm
for dynamic fleet management, ii: Multiperiod travel times. Transportation
Science, 36(1):40–54, 2002. 18

[100] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM (JACM), 35(4):921–940, 1988. 11

[101] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by succes-
sive approximation. Mathematics of Operations Research, 15(3):430–466, 1990.
11

[102] A. V. Goldberg, C. Harrelson, H. Kapla, and R. F. Werneck. Efficient point-to-
point shortest path algorithms. https://www.cs.princeton.edu/courses/
archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.
pdf, 2005. Online; accessed 20 January 2019. 24

[103] J. Goldenberg, B. Libai, and E. Muller. Talk of the Network: A Complex
Systems Look at the Underlying Process of Word-of-Mouth. Marketing Letters,
12(3):211–223. 101, 113

[104] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring Networks of Dif-
fusion and Influence. ACM Transactions on Knowledge Discovery from Data,
5(4):1–37, 2012. 103

[105] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning influence probabilities
in social networks. In Proceedings of the 3rd ACM International Conference on
Web Search and Data Mining, pages 241–250. 2010. 113, 118

[106] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs.
In Advances in Neural Information Processing Systems, pages 1523–1530, 2001.
80

[107] N. Gülpinar, D. Pachamanova, and E. Çanakoglu. Robust strategies for facility
location under uncertainty. European Journal of Operational Research, 225(1):
21–35, 2013. 42

[108] B. Gurley. A deeper look at ubers dynamic pric-
ing model. http://abovethecrowd.com/2014/03/11/
a-deeper-look-at-ubers-dynamic-pricing-model/, 2014. Online; ac-
cessed 28 January 2019. 27

https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
http://abovethecrowd.com/2014/03/11/a-deeper-look-at-ubers-dynamic-pricing-model/
http://abovethecrowd.com/2014/03/11/a-deeper-look-at-ubers-dynamic-pricing-model/

BIBLIOGRAPHY 163

[109] I. Gurobi Optimization. Gurobi Optimizer Reference Manual. http://www.
gurobi.com. 49, 62

[110] Y. Hayashi and N. Uchiyama. Onion-like networks are both robust and resilient.
Scientific Reports, 8(1):11241, 2018. 127, 150

[111] E. Hazan. Introduction to online convex optimization. Foundations and Trends
in Optimization, 2(3-4):157–325, 2016. 33

[112] X. He. personal communication, 2019. 139

[113] X. He and D. Kempe. Stability of influence maximization. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1256–1265, 2014. 129

[114] X. He and D. Kempe. Robust influence maximization. In Proceedings of the 22th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 885–894, 2016. 41, 42, 124, 125, 127, 129, 130, 131, 133, 134,
139, 141

[115] X. He, G. Song, W. Chen, and Q. Jiang. Influence blocking maximization in
social networks under the competitive linear threshold model. In Proceedings
of the 2012 SIAM International Conference on Data Mining, pages 463–474,
2012. 129, 130

[116] A. J. Hey, S. Tansley, and K. M. Tolle. The fourth paradigm: data-intensive
scientific discovery. Microsoft Research, 2009. 3

[117] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhari-
wal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schul-
man, S. Sidor, and Y. Wu. Stable baselines. https://github.com/hill-a/
stable-baselines, 2018. 90

[118] A. Hoffman and H. Markowitz. A note on shortest path, assignment, and
transportation problems. Naval Research Logistics Quarterly, 10(1):375–379,
1963. 10

[119] J. Holler, R. Vuorio, T. Jin, S. Singh, Z. Qin, J. Ye, X. Tang, Y. Jiao, and
C. Wang. Deep reinforcement learning for dynamic multi-driver dispatching and
repositioning problem. In Proceedings of the IEEE International Conference on
Data Mining, 2019. 77, 78, 80

[120] P. Holme and B. J. Kim. Growing scale-free networks with tunable clustering.
Physical review E, 65(2):26107, 2002. 108, 119, 140

[121] J. Huang, Z. Wen, J. Qi, R. Zhang, J. Chen, and Z. He. Top-k most influential
locations selection. In Proceedings of the 20th ACM international conference
on Information and knowledge management, pages 2377–2380. 22

[122] X. Huang and P. Lu. An algorithmic framework for approximating maximin
share allocation of chores. CoRR, abs/1907.04505v1, 2019. 81

http://www.gurobi.com
http://www.gurobi.com
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

164 BIBLIOGRAPHY

[123] S. Ivanov and P. Karras. Harvester: Influence optimization in symmetric in-
teraction networks. In Proceedings of the IEEE International Conference Data
Science and Advanced Analytics, pages 61–70, 2016. 126

[124] S. Ivanov, K. Theocharidis, M. Terrovitis, and P. Karras. Content recommenda-
tion for viral social influence. In Proceedings of the 40th International ACM SI-
GIR Conference on Research and Development in Information Retrieval, pages
565–574, 2017. 114

[125] R. K. Iyer and J. A. Bilmes. Submodular optimization with submodular cover
and submodular knapsack constraints. In Advances in Neural Information Pro-
cessing Systems, pages 2436–2444, 2013. 17

[126] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location
problems. In Proceedings of the 34 Annual ACM Symposium on Theory of
Computing, pages 731–740, 2002. 12

[127] K. Jansen. An EPTAS for scheduling jobs on uniform processors: Using an
MILP relaxation with a constant number of integral variables. SIAM Journal
on Discrete Mathematics, 24(2):457–485, 2010. 81

[128] S. Jegelka and A. Krause. Tutorial on submodularity in machine learn-
ing and computer vision. https://las.inf.ethz.ch/submodularity/
submodularity-2012.pdf, 2012. Online; accessed 7 February 2020. 16, 17

[129] S. Jegelka, H. Lin, and J. A. Bilmes. On fast approximate submodular mini-
mization. In Advances in Neural Information Processing Systems, pages 460–
468, 2011. 17

[130] S. D. Jena, J.-F. Cordeau, and B. Gendron. Dynamic facility location with
generalized modular capacities. Transportation Science, 49(3):484–499, 2015.
22

[131] C. Jiang, W. Li, Q. Bai, and M. Zhang. Preference aware influence maximiza-
tion. In Multi-agent and Complex Systems, pages 153–164. 2017. 38

[132] W. Jiang and L. Zhang. The impact of the transportation network companies
on the taxi industry: Evidence from beijing’s GPS taxi trajectory data. IEEE
Access, 6:12438–12450, 2018. 77

[133] J. Jin, M. Zhou, W. Zhang, M. Li, Z. Guo, Z. Qin, Y. Jiao, X. Tang, C. Wang,
J. Wang, G. Wu, and J. Ye. Coride: Joint order dispatching and fleet manage-
ment for multi-scale ride-hailing platforms. CoRR, abs/1905.11353, 2019. 28,
77, 78, 80

[134] N. Jozefowiez, F. Semet, and E.-G. Talbi. The bi-objective covering tour prob-
lem. Computers & operations research, 34(7):1929–1942. 22

[135] D. Kalimeris, G. Kaplun, and Y. Singer. Robust influence maximization for
hyperparametric models. In ICML, pages 3192–3200, 2019. 129

[136] I. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-tree Using Fractals.
In Proceedings of the 20th International Conference on Very Large Data Bases,
pages 500–509. 1994. 23, 63

https://las.inf.ethz.ch/submodularity/submodularity-2012.pdf
https://las.inf.ethz.ch/submodularity/submodularity-2012.pdf

BIBLIOGRAPHY 165

[137] L. Katz. A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43, 1953. 131

[138] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the 9th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 137–146, 2003. 16,
37, 101, 113, 120, 127, 128, 129

[139] Y. Khorramzadeh. Network Reliability: Theory, Estimation, and Applications.
PhD thesis, Virginia Tech, 2015. 127

[140] S. Khot and A. K. Ponnuswami. Approximation algorithms for the max-min
allocation problem. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 204–217. Springer, 2007. 81

[141] I. Y. Kim and O. De Weck. Adaptive weighted sum method for multiobjec-
tive optimization: a new method for pareto front generation. Structural and
multidisciplinary optimization, 31(2):105–116, 2006. 3

[142] M. Kimura, K. Saito, and H. Motoda. Blocking links to minimize contamination
spread in a social network. ACM Transactions on Knowledge Discovery from
Data (TKDD), 3(2):9. 16

[143] G. W. Klau and R. Weiskircher. Robustness and resilience. In Network Analysis,
pages 417–437. Springer Berlin Heidelberg, 2005. 125

[144] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional,
2009. 136

[145] D. E. Knuth. The Art of Computer Programming, Volume 3: Retrieval on
Secondary Keys. Addison-Wesley Professional, 2009. 40

[146] M. R. Korupolu, C. Plaxton, and R. Rajaraman. Analysis of a local search
heuristic for facility location problems. Algorithms, 37(1):146–188, 2000. 49

[147] A. Krause and C. Guestrin. Optimal nonmyopic value of information in graph-
ical models: efficient algorithms and theoretical limits. Carnegie Mellon Uni-
versity. Center for Automated Learning and Discovery, 2005. 16

[148] A. Krause and C. Guestrin. Beyond convexity: Submodularity in machine
learning. ICML Tutorials, 2008. 16

[149] H. W. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955. 7

[150] M. Kümmel, F. Busch, and D. Z. W. Wang. Taxi dispatching and stable mar-
riage. In Proceedings of the 7th International Conference on Ambient Systems,
Networks and Technologies, pages 163–170, 2016. 78

[151] J. Kunegis. KONECT: the koblenz network collection. In WWW Conference,
pages 1343–1350, 2013. 141

166 BIBLIOGRAPHY

[152] R. Lage, P. Dolog, and M. Leginus. Vector space models for the classification
of short messages on social network services. pages 209–224, 2013. 110, 117,
118

[153] P. Lahoti, K. P. Gummadi, and G. Weikum. iFair: Learning individually fair
data representations for algorithmic decision making. In Proceedings of the 35th
IEEE International Conference on Data Engineering, pages 1334–1345, 2019.
82

[154] E. Lam and P. V. Hentenryck. A branch-and-price-and-check model for the
vehicle routing problem with location congestion. Constraints, 21(3):394–412.
22

[155] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in
a flowgraph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1(1):121–141, 1979. 102

[156] J. Leskovec and R. Sosič. SNAP: A General-Purpose Network Analysis and
Graph-Mining Library. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 8(1):1–20, 2016. 23, 110

[157] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graph evolution: Densification
and shrinking diameters. ACM Transactions on Knowledge Discovery from
Data (TKDD), 1(1):2, 2007. 141

[158] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective outbreak detection in networks. In Proceedings of
the 13rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 420–429, 2007. 136

[159] N. S. Lesmana, X. Zhang, and X. Bei. Balancing efficiency and fairness in
on-demand ridesourcing. In Proceedings of the Annual Conference on Neural
Information Processing Systems, pages 5310–5320, 2019. 41, 79, 81

[160] M. Ley and M. Ley. The DBLP computer science bibliography: Evolution,
research issues, perspectives. In International symposium on string processing
and information retrieval, pages 1–10. 2002. 141

[161] S. Li. Approximating capacitated k-median with (1+ϵ) k open facilities. In
Proceedings of the 27 annual ACM-SIAM symposium on Discrete algorithms,
pages 786–796. 2016. 49

[162] S. Li. Private Communication, 2018. 49

[163] S. Li and S. Li. On uniform capacitated k-median beyond the natural lp re-
laxation. ACM Transactions on Algorithms (TALG), 13(2):1–18, 2017. 49, 50,
62

[164] X. Li, J. Ma, J. Cui, A. Ghiasi, and F. Zhou. Design framework of large-scale
one-way electric vehicle sharing systems: A continuum approximation model.
Transportation Research Part B: Methodological, 88:21–45, 6 2016. 22

BIBLIOGRAPHY 167

[165] Y. Li, J. Fan, Y. Wang, and K. Tan. Influence maximization on social graphs:
A survey. IEEE Transactions on Knowledge and Data Engineering, 30(10):
1852–1872, 2018. 19, 38, 39, 100, 101, 113, 124, 127, 129

[166] S. Lim, J. Shin, N. Kwak, and K. Jung. Phase transitions for information
diffusion in random clustered networks. The European Physical Journal B, 89
(9):188, 2016. 127

[167] K. Lin, R. Zhao, Z. Xu, and J. Zhou. Efficient large-scale fleet management
via multi-agent deep reinforcement learning. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1774–1783. 2018. 28, 34, 77, 78, 80, 88, 89, 91

[168] J. Liu, M. Zhou, S. Wang, and P. Liu. A comparative study of network robust-
ness measures. Frontiers of Computer Science, 11(4):568–584, 2017. 124

[169] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining topic-level influence in
heterogeneous networks. In Proceedings of the 19th ACM international confer-
ence on Information and knowledge management, pages 199–208, 2010. 114

[170] A. Logins. Data-driven algorithms for spatial networks flow problems. Master’s
thesis, Skolkovo Institute of Science and Technology, 2016. 11

[171] A. Logins and P. Karras. An experimental study on network immunization.
In Proceedings of the 23rd International Conference on Extending Database
Technology, pages 726–729, 2019. 100, 131, 141, 150

[172] A. Logins and P. Karras. Content-based network influence probabilities: Ex-
traction and application. In 2019 International Conference on Data Mining
Workshops, pages 69–72. 2019. 100

[173] A. Logins, P. Karras, and C. S. Jensen. Multicapacity facility selection in
networks. In Proceedings of the 35th IEEE International Conference on Data
Engineering, pages 794–805, 2019. 47

[174] A. Logins, Y. Li, and P. Karras. On the robustness of cascade diffusion under
node attacks. In Proceedings of the Web Conference, 2020. 123

[175] A. Logins, Y. Li, and P. Karras. On the robustness of cascade diffusion un-
der node attacks. Submitted to IEEE Transactions on Knowledge and Data
Engineering, 2020. 124

[176] A. Logins, L. H. U, and P. Karras. Fair cruising. In Submitted to the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2020. 77

[177] O. Lordan and M. Albareda-Sambola. Exact calculation of network robustness.
Reliability Engineering & System Safety, 183:276–280, 2019. 126, 132

[178] L. A. Lorena and E. L. Senne. A column generation approach to capacitated
p-median problems. Computers & Operations Research, 31(6):863–876, 2004.
48, 50

168 BIBLIOGRAPHY

[179] L. Lovász and M. Plummer. Matching Theory. Elsevier Science, 1986. 7, 9, 11,
12, 13, 15

[180] L. Lovasz, M. Grotschel, and A. Schrijver. Geometric algorithms and combina-
torial optimization. Springer, 1988. 14, 17

[181] W. Lu and L. Quadrifoglio. Fair cost allocation for ridesharing services - model-
ing, mathematical programming and an algorithm to find the nucleolus. CoRR,
abs/1902.07266, 2019. 78

[182] D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming, volume 228.
Springer, 2015. 13

[183] N. Marković, I. O. Ryzhov, and P. Schonfeld. Evasive flow capture: A multi-
period stochastic facility location problem with independent demand. European
Journal of Operational Research, 257(2):687–703, 2017. 22

[184] M. Marufuzzaman, R. Gedik, and M. S. Roni. A Benders based rolling horizon
algorithm for a dynamic facility location problem. Computers & Industrial
Engineering, 98:462–469. 22

[185] P. Massa, M. Salvetti, and D. Tomasoni. Bowling alone and trust decline in
social network sites. In Proceedings of the 8th IEEE International Conference
on Dependable, Autonomic and Secure Computing, pages 658–663, 2009. 141

[186] A. Maulana, M. Kefalas, and M. T. M. Emmerich. Immunization of networks
using genetic algorithms and multiobjective metaheuristics. In IEEE Sympo-
sium Series on Computational Intelligence, pages 1–8, 2017. 103

[187] R. P. McAfee and V. Te Velde. Dynamic pricing in the airline industry. Hand-
book on Economics and Information Systems, 2006. 26, 27

[188] S. Mitra. Identifying top-K optimal locations for placement of largescale
trajectory-aware services. 2016. 21, 22, 63

[189] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. 89

[190] F. Morone and H. A. Makse. Influence maximization in complex networks
through optimal percolation. Nature, 524(7563):65, 2015. 128

[191] K. Nagano and Y. Kawahara. Structured convex optimization under submod-
ular constraints. In Proceedings of the 29th Conference on Uncertainty in Ar-
tificial Intelligence. 2013. 17

[192] V. Nanda, P. Xu, K. A. Sankararaman, J. P. Dickerson, and A. Srinivasan.
Balancing the tradeoff between profit and fairness in rideshare platforms during
high-demand hours. In AAAI/ACM Conference on AI, Ethics, and Society,
page 131, 2020. 33, 78

[193] M. Ndiaye and H. Alfares. Modeling health care facility location for moving
population groups. Computers & Operations Research, 35(7):2154–2161. 22

BIBLIOGRAPHY 169

[194] P. Netrapalli and S. Sanghavi. Learning the graph of epidemic cascades. In
SIGMETRICS, pages 211–222, 2012. 113

[195] B. Neuberg. http://coworking.com, 2020. 71

[196] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi. Deep reinforcement learning
for multi-agent systems: A review of challenges, solutions and applications.
CoRR, abs/1812.11794, 2018. 34, 80

[197] Y. V. Nikulin. Robustness in combinatorial optimization and scheduling theory:
An annotated bibliography. Technical report, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, 2004. 42

[198] N. Ohsaka, T. Akiba, Y. Yoshida, and K. Kawarabayashi. Dynamic influence
analysis in evolving networks. PVLDB, 9(12):1077–1088, 2016. 133, 134, 138,
139, 140

[199] A. Pagani, G. Mosquera, A. Alturki, S. Johnson, S. Jarvis, A. Wilson, W. Guo,
and L. Varga. Resilience or robustness: identifying topological vulnerabilities
in rail networks. Royal Society Open Science, 6(2):181301, 2019. 124

[200] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank-
ing: Bringing order to the web. Technical report, Stanford InfoLab, 1999. 131

[201] S. Pallottino and M. G. Scutella. Shortest path algorithms in transportation
models: classical and innovative aspects. In Equilibrium and advanced trans-
portation modelling, pages 245–281. Springer, 1998. 25

[202] M. Pan, Y. Li, X. Zhou, Z. Liu, R. Song, H. Lu, and J. Luo. Dissecting
the Learning Curve of Taxi Drivers: A Data-Driven Approach, pages 783–791.
2019. 78, 79, 80

[203] S. Park, T.-E. Lee, and C. S. Sung. A three-level supply chain network de-
sign model with risk-pooling and lead times. Transportation Research Part E:
Logistics and Transportation Review, 46(5):563–581, 2010. 22

[204] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven explo-
ration by self-supervised prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 16–17, 2017. 35

[205] V. H. L. Patricio, F. Daolio, H. J. Herrmann, and M. Tomassini. Propagation
Phenomena in Real World Networks. Generating Robust and Efficient Networks
Under Targeted Attacks, pages 215–224. Intelligent Systems Reference Library.
Springer, 2015. 124

[206] G. Paul, T. Tanizawa, S. Havlin, and H. E. Stanley. Optimization of robustness
of complex networks. The European Physical Journal B, 48(1):149–149, 2005.
126

[207] S. A. Pedersen, B. Yang, and C. S. Jensen. Fast stochastic routing under time-
varying uncertainty. The VLDB Journal, Oct 2019. 25

[208] R. L. Phillips. Pricing and revenue optimization. Stanford University Press,
2005. 26

http://coworking.com

170 BIBLIOGRAPHY

[209] D. V. Phung, T. M. Hoang, A. T. Nguyen, and T. B. Dinh. Dta hunter sys-
tem: A new statistic-based framework of predicting future demand for taxi
drivers. In Proceedings of the 8th International Symposium on Information and
Communication Technology, pages 159–166, 2017. 78

[210] W. B. Powell and H. Topaloglu. Approximate dynamic programming for large-
scale resource allocation problems. In Models, Methods, and Applications for
Innovative Decision Making, pages 123–147. INFORMS, 2006. 18

[211] S. Qian, J. Cao, F. L. Mouël, I. Sahel, and M. Li. SCRAM: A sharing con-
sidered route assignment mechanism for fair taxi route recommendations. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 955–964, 2015. 78

[212] G. Qin, T. Li, B. Yu, Y. Wang, Z. Huang, and J. Sun. Mining factors affecting
taxi drivers incomes using gps trajectories. Transportation Research Part C:
Emerging Technologies, 79:103 – 118, 2017. 42, 78, 79

[213] Z. Qu, Z. Pan, Y. Chen, X. Wang, and H. Li. A distributed control method
for urban networks using multi-agent reinforcement learning based on regional
mixed strategy nash-equilibrium. IEEE Access, 2020. 41

[214] S. S. Reynolds and D. Rietzke. Price caps, oligopoly, and entry. Economic
Theory, 66(3):707–745, Oct 2018. 29

[215] J. M. Robertson and W. A. Webb. Cake-cutting algorithms - be fair if you can.
A K Peters, 1998. 42, 81

[216] H. Rock. Scaling techniques for minimal cost network flows. Discrete structures
and algorithms, 1980. 11

[217] J. Rodriguez. The science behind openai five that just produced one of the
greatest breakthrough in the history of AI. https://bit.ly/31G8T7z, 2018.
Online; accessed 30 January 2019. 35

[218] I. Rodriguez-Martin and J. J. Salazar-Gonzalez. Solving a capacitated hub
location problem. European Journal of Operational Research, 184(2):468–479,
2008. 22

[219] H. Rong, X. Zhou, C. Yang, Z. Shafiq, and A. Liu. The rich and the poor: A
markov decision process approach to optimizing taxi driver revenue efficiency.
In Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management, pages 2329–2334, 2016. 78, 79

[220] S. Ropke and J.-F. Cordeau. Branch and cut and price for the pickup and
delivery problem with time windows. Transportation Science, 43(3):267–286,
2009. 22

[221] R. A. Rossi and N. K. Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, pages 4292–4293, 2015. 141

[222] K. J. Rothman, S. Greenland, and T. L. Lash. Modern Epidemiology. Lippincott
Williams & Wilki, 2013. 127

https://bit.ly/31G8T7z

BIBLIOGRAPHY 171

[223] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo method,
volume 10. John Wiley & Sons, 2016. 19

[224] M. Rönnqvist, S. Tragantalerngsak, and J. Holt. A repeated matching heuristic
for the single-source capacitated facility location problem. European Journal of
Operational Research, 116(1):51–68, jul 1999. 12, 23

[225] K. Saito, R. Nakano, and M. Kimura. Prediction of information diffusion prob-
abilities for independent cascade model. In Knowledge-based intelligent infor-
mation and engineering systems, pages 67–75. 2008. 113

[226] C. Saxena, M. N. Doja, and T. Ahmad. Group based centrality for immuniza-
tion of complex networks. Physica A, 508:35–47, 2018. 103

[227] K. Scaman, A. Kalogeratos, L. Corinzia, and N. Vayatis. A spectral
method for activity shaping in continuous-time information cascades. CoRR,
abs/1709.05231, 2017. 40, 101, 103, 107, 110, 131

[228] T. Schank and D. Wagner. Approximating clustering coefficient and transitivity.
Journal of Graph Algorithms and Applications, 9(2):265–275, 2005. 117, 141

[229] T. Schieber, M. Ravetti, and P. M. Pardalos. A review on network robustness
from an information theory perspective. In Proceedings of the International
Conference on Discrete Optimization and Operations Research, pages 50–60.
2016. 124

[230] C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and H. J. Her-
rmann. Mitigation of malicious attacks on networks. Proceedings of the National
Academy of Sciences, 108(10):3838–3841, 2011. 124, 126, 149

[231] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. 90

[232] N. Schwartz, R. Cohen, D. ben Avraham, A.-L. Barabási, and S. Havlin. Per-
colation in directed scale-free networks. Physical Review E, 66(1):015104, 2002.
132

[233] I. Segalovich. A fast morphological algorithm with unknown word guessing
induced by a dictionary for a web search engine. In Proceedings of the Interna-
tional Conference on Machine Learning; Models, Technologies and Applications,
pages 273–280, 2003. 117

[234] P. Shakarian, A. Bhatnagar, A. Aleali, E. Shaabani, and R. Guo. The inde-
pendent cascade and linear threshold models. In Diffusion in Social Networks,
pages 35–48. Springer, 2015. 40, 101, 103, 113

[235] D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility
location problems. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 265–274. 1997. 22

[236] L. V. Snyder. Facility location under uncertainty: a review. IIE transactions,
38(7):547–564, 2006. 24, 26, 42

172 BIBLIOGRAPHY

[237] L. V. Snyder, M. S. Daskin, and C.-P. Teo. The stochastic location model
with risk pooling. European Journal of Operational Research, 179(3):1221–1238,
2007. 22

[238] Y. Song and T. N. Dinh. Optimal Containment of Misinformation in Social
Media: A Scenario-Based Approach. In International Conference on Combina-
torial Optimization and Applications, pages 547–556. 2014. 39

[239] M. Staib and S. Jegelka. Robust budget allocation via continuous submodular
functions. In Proceedings of the 34th International Conference on Machine
Learning, pages 3230–3240, 2017. 3, 18, 42

[240] D. Stauffer and A. Aharony. Introduction to percolation theory. Taylor &
Francis, 2003. 124, 126

[241] Y. Su and X. Yan. Cross-domain semantic parsing via paraphrasing. In Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 1235–1246, 2017. 118

[242] K. Subbian, C. Aggarwal, and J. Srivastava. Content-centric flow mining for
influence analysis in social streams. In Proceedings of the 22nd ACM interna-
tional conference on Information & Knowledge Management, pages 841–846,
2013. 114

[243] T. Sühr, A. J. Biega, M. Zehlike, K. P. Gummadi, and A. Chakraborty. Two-
sided fairness for repeated matchings in two-sided markets: A case study of a
ride-hailing platform. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 3082–3092, 2019.
42, 79

[244] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
press, 2018. 33, 34

[245] H. Taha. Operations Research an Introduction. Pearson, 2017. 3

[246] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear time: A
martingale approach. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1539–1554. 2015. 40, 120, 133, 141

[247] J. Tariq, M. Ahmad, I. Khan, and M. Shabbir. Scalable approximation algo-
rithm for network immunization. page 200, 2017. 101, 102, 107

[248] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972. 151

[249] V. Tejaswi, P. V. Bindu, and P. S. Thilagam. Diffusion models and approaches
for influence maximization in social networks. pages 1345–1351, 2016. 101

[250] G. Tennenholtz, C. Caramanis, and S. Mannor. The stochastic firefighter prob-
lem. CoRR, abs/1711.08237, 2017. 103

[251] G. Tong, W. Wu, S. Tang, and D.-Z. Du. Adaptive Influence Maximization
in Dynamic Social Networks. IEEE/ACM Transactions on Networking, 25(1):
112–125, 2017. 38

BIBLIOGRAPHY 173

[252] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye. Dynamic pricing in
spatial crowdsourcing: A matching-based approach. In Proceedings of the 2018
International Conference on Management of Data, pages 773–788, 2018. 27,
28

[253] C. Tseng and C. Chau. Viability analysis of electric taxis using new york city
dataset. In Proceedings of the 8th International Conference on Future Energy
Systems, pages 328–333, 2017. 79

[254] S. Tsugawa and H. Ohsaki. On the robustness of influence maximization al-
gorithms against non-adversarial perturbations. In Proceedings of the 2017
IEEE/ACM International Conference on Advances in Social Networks Analy-
sis and Mining, pages 91–94, 2017. 129

[255] C. Tzamos and C. A. Wilkens. The value of knowing your enemy. CoRR,
abs/1411.1379, 2014. 28

[256] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis. Capacity constrained
assignment in spatial databases. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 15–28, 2008. 52, 54

[257] L. H. U, K. Mouratidis, M. L. Yiu, and N. Mamoulis. Optimal matching
between spatial datasets under capacity constraints. ACM transactions on
database systems, 35(2):9:1–9:44, 2010. 10, 11, 52, 54, 59, 60, 61

[258] Z. Ulukan and E. Demircioglu. A survey of discrete facility location problems.
International Journal of Social, Behavioral, Educational, Economic, Business
and Industrial Engineering, 9(7), 2015. 16, 21, 23

[259] Unity. Solving sparse-reward tasks with Curiosity. https://blogs.unity3d.
com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/, 2018.
Online; accessed 30 January 2019. 35

[260] J. Von Neumann. On the theory of games of strategy. Contributions to the
Theory of Games, 4:13–42, 1959. 41

[261] E. Vynnycky and R. White. An introduction to infectious disease modelling.
Oxford University Press, 2010. 125

[262] B. Wang, G. Chen, L. Fu, L. Song, and X. Wang. DRIMUX: Dynamic rumor
influence minimization with user experience in social networks. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 29(10):2168–2181, 2017.
103, 110, 126

[263] H. Wang and H. Yang. Ridesourcing systems: A framework and review. Trans-
portation Research Part B: Methodological, 129:122 – 155, 2019. 77

[264] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic spreading in
real networks: An eigenvalue viewpoint. Technical report, 2003. 102, 110

[265] Y. Wang, Y. Tong, C. Long, P. Xu, K. Xu, and W. Lv. Adaptive dynamic
bipartite graph matching: A reinforcement learning approach. In Proceedings
of the 35th IEEE International Conference on Data Engineering, pages 1478–
1489, 2019. 33

https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/

174 BIBLIOGRAPHY

[266] Z. Wang, C. Chen, and W. Li. Information diffusion prediction with network
regularized role-based user representation learning. ACM Trans. Knowl. Discov.
Data, 13(3):29:1–29:23, May 2019. 115

[267] D. J. Watts and S. H. Strogatz. Collective dynamics of small-worldnetworks.
Nature, 393(6684):440, 1998. 108, 140

[268] R. Waury, C. S. Jensen, S. Koide, Y. Ishikawa, and C. Xiao. Indexing trajecto-
ries for travel-time histogram retrieval. In Advances in Database Technology -
22nd International Conference on Extending Database Technology, pages 157–
168, 2019. 25

[269] J. K. Weber and V. S. Pande. Percolation-like phase transitions in network
models of protein dynamics. The Journal of Chemical Physics, 142(21):215105,
2015. 126

[270] E. W. Weisstein. Monte Carlo Method. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/MonteCarloMethod.html, 2020.
Online; accessed 30 January 2019. 18

[271] A. W. Wijayanto and T. Murata. Pre-emptive spectral graph protection strate-
gies on multiplex social networks. Applied Network Science, 3(1):5. 103, 110

[272] B. Wilder, . S.-C. Suen, . M. Tambe, D. of Computer, S. 2Department, of Indus-
trial, and S. Engineering. Preventing infectious disease in dynamic populations
under uncertainty. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, pages 841–848, 2018. 103

[273] T.-H. Wu and J.-N. Lin. Solving the competitive discretionary service facility
location problem. European Journal of Operational Research, 144(2):366–378,
2003. 22

[274] F. Xiao, J. X. Zhou, and Z. a Hu. Location and pricing of competitive ser-
vice providers for post-disaster relief. International Journal of Industrial and
Systems Engineering, 25(1):14, 2017. 42

[275] Y. Yamaguchi and T. Maehara. Stochastic packing integer programs with few
queries. In A. Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 293–310. 2018. 17

[276] D. Yan, J. Cheng, Z. Zhao, and W. Ng. Efficient location-based search of
trajectories with location importance. Knowledge and Information Systems, 45
(1):215–245, 2015. 22

[277] D. Yang, X. Liao, H. Shen, X. Cheng, and G. Chen. Relative influence maxi-
mization in competitive social networks. Science China Information Sciences,
60(10):108101, 2017. 38

[278] D. Yang, X. Liao, H. Shen, X. Cheng, and G. Chen. Dynamic node immuniza-
tion for restraint of harmful information diffusion in social networks. Physica
A, 503:640–649, 2018. 101, 103, 110

http://mathworld.wolfram.com/MonteCarloMethod.html

BIBLIOGRAPHY 175

[279] Y. Yang, E. Chen, Q. Liu, B. Xiang, T. Xu, and S. A. Shad. On approxima-
tion of real-world influence spread. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 548–564. 2012. 39

[280] B. Yao, X. Xiao, F. Li, and Y. Wu. Dynamic monitoring of optimal locations
in road network databases. The VLDB Journal, 23(5):697–720, 2014. 22, 23,
51

[281] H. Yildirim, V. Chaoji, and M. J. Zaki. DAGGER: A scalable index for reach-
ability queries in large dynamic graphs. CoRR, abs/1301.0977, 2013. 125, 135,
138, 151

[282] E. Yilmaz, S. Elbasi, and H. Ferhatosmanoglu. Predicting Optimal Facil-
ity Location without Customer Locations. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 2121–2130. 2017. 40, 51, 71, 72

[283] X. Yu, S. Gao, X. Hu, and H. Park. A Markov decision process approach to
vacant taxi routing with e-hailing. Transportation Research Part B: Method-
ological, 121(C):114–134, 2019. 79

[284] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates.
FA*IR: A Fair Top-k Ranking Algorithm. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, pages 1569–1578,
2017. 82

[285] C. Zhang and J. A. Shah. Fairness in multi-agent sequential decision-making.
In Proceedings in the Annual Conference on Neural Information Processing
Systems, pages 2636–2644, 2014. 80

[286] C. Zhang and J. A. Shah. On fairness in decision-making under uncertainty:
Definitions, computation, and comparison. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, pages 3642–3648, 2015. 43

[287] H. Zhang, S. Mishra, M. T. Thai, J. Wu, and Y. Wang. Recent advances in
information diffusion and influence maximization in complex social networks.
Opportunistic Mobile Social Networks, 37(1.1):37, 2014. 127

[288] J. Zhang, J. Tang, J. Li, Y. Liu, and C. Xing. Who influenced you? predicting
retweet via social influence locality. ACM Transactions on Knowledge Discovery
from Data (TKDD), 9(3):25:1–25:26, 2015. 113

[289] R. Zhang and R. Ghanem. Demand, supply, and performance of street-hail
taxi. IEEE Transactions on Intelligent Transportation Systems, pages 1–10,
2019. 78

[290] Y. Zhang. Optimizing and Understanding Network Structure for Diffusion. PhD
thesis, Virginia Tech. 101

[291] Y. Zhang and B. A. Prakash. Data-aware vaccine allocation over large networks.
ACM Transactions on Knowledge Discovery from Data (TKDD), 10(2):20:1–
20:32, 2015. 101, 102, 103, 107, 110, 112, 113, 119, 120, 127, 130, 131

176 BIBLIOGRAPHY

[292] Y. Zhang, A. Ramanathan, A. Vullikanti, L. L. Pullum, and B. A. Prakash.
Data-driven immunization. In Proceedings of the IEEE International Confer-
ence on Data Mining, pages 615–624, 2017. 104, 110

[293] Y. Zhao, I. Borovikov, J. Rupert, C. Somers, and A. Beirami. On multi-agent
learning in team sports games. CoRR, abs/1906.10124, 2019. 34, 35

[294] L. Zheng, P. Cheng, and L. Chen. Auction-based order dispatch and pricing in
ridesharing. In Proceedings of the IEEE 35th International Conference on Data
Engineering, pages 1034–1045. 2019. 28

[295] M. Zhou, J. Jin, W. Zhang, Z. Qin, Y. Jiao, C. Wang, G. Wu, Y. Yu, and J. Ye.
Multi-agent reinforcement learning for order-dispatching via order-vehicle dis-
tribution matching. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, pages 2645–2653. 2019. 28, 77,
78, 80

[296] A. Zockaie, H. Z. Aashtiani, and M. Ghamami. Solving detourbased fuel sta-
tions location problems. ComputerAided Civil and Infrastructure Engineering,
31(2):132–144, 2016. 22

[297] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pages 2847–2856,
2018. 42, 43

	Abstract
	Resumé
	Contents
	Overview
	Introduction
	Bipartite Matching
	Assignment Problem
	From Assignments to Flows
	From Capacity-Scaling to Cost-Scaling
	Applications of Bipartite Matching

	Standard Tools
	Linear Programming
	Submodularity
	Dynamic Programming
	Monte-Carlo

	Facility Location
	Classification of Facility Location Problems
	Classic Facility Location
	Scalable Facility Location
	Stochastic Facility Location
	Route Planning
	Dynamic Pricing

	Decisions Over Time Under Uncertainty
	The Multi-Armed Bandit
	Reinforcement Learning

	Diffusion in Networks
	Influence Maximization
	Diffusion and the Facility Location problem
	Scalable Spread Control

	Robustness and Fairness
	Fairness as a Form of Robustness
	Fairness and Robustness in Resource Allocation
	Connections to Other Areas

	Publications
	Multicapacity Facility Selection in Networks
	Introduction
	Problem Statement
	Related Work
	The Wide Matching Algorithm
	Matching optimality
	Analysis of WMA
	Experiments
	Conclusion

	Fair Cruising
	Introduction
	Background
	Problem Statement
	Benchmark Environment
	Solutions
	Experiments
	Conclusions

	Network Immunization
	Introduction to Node Immunization
	Background
	Methodology
	Experimental Results
	Introduction to Diffusion Control
	Framework
	Applications
	Conclusions

	On the Robustness of Cascade Diffusion under Node Attacks
	Introduction
	Background
	Diffusion Robustness Measures
	Experiments
	Conclusions

	Bibliography

