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Abstract—A node selection query returns a set of network
nodes that optimize some objective function. The problem of
enabling fast and accurate node selection is of high importance
in fields such as logistics, service planning, and advertising. Due
to the computational complexity, it is often impossible to provide
an optimal solution to particular node selection queries. We study
new approximation methods for node selection in million-node
networks, such as social and road networks. We extend existing
models to a more realistic scenarios by introducing time and
uncertainty into the problem domain, and we apply the proposed
solutions to real-world datasets.

I. INTRODUCTION

Network models are used widely in business analytics

to gain insight into geo-social customer interactions and to

improve these. Due to the amounts of information and com-

putational restrictions, network models are often simplified by

ignoring node and edge labels, by ommiting stochastic and

time-dependent components in the models, or by applying

graph sampling. We study possible improvements for a partic-

ular family of problems, namely Node Selection in large-scale

networks (NS). Finding points of interest in networks enriched

with quantitative geo-social proximities of people and places

can significantly improve urban life, can reveal patterns of

human behavior, and can provide a foundation for addressing

the needs of people.

Important NS functionality falls into the class of Facility
Location (FL). According to a recent survey [1], the general

formulation of FL entails allocation of facilities (resourses) in

order to minimize the cost of satisfying a set of customers
(demands) with respect to a set of constraints. The simpliest

models assume deterministic graphs with customers assigned

to nodes. The objective function can be either the sum of

distrances to the nearest facility or the maximum distance to

the closest facility across all customers. Variations of the prob-

lem involve Hubs, Facility Hierarchies, Supply Chains, and

Multi-Criteria for user preferences. Most of these problems

are known to be NP-hard.

Advanced contemporary models consider the temporal and

stochastic nature of customers. Examples of time-dependency

include periodic demands [2] and real-time location up-

dates [3]. Historical data about moving customers can be

represented either as trajectories [4], i.e., as sequences of

timestamped locations, or as source-destination tuples [5].

Facilities can also be represented as static points with temporal

availability [2], paths [6], or trajectories. The latter case

usually occurs in the scope of routing algorithms.

Stochatic models may embody uncertainty in both node and

edge labels. An example of the former occurs when a customer

has a probabilitic demand [7]. If a customer is represented

as a trajectory, each edge has a probabilistic distribution that

shows the flow of customers through the edge. The objective

function is expressed as an expected value of some cumulative

cost. For instance, Markovic et al. [2] consider the problem

of placing vehicle inspection stations. They analyze the flow

of overloaded trucks that produce damage to the environment

unless it is regulated. The objective is to minimize the expected

value of the damage. The uncertainty is associated with a

size of flow and the willingness of drivers to increase travel

distance to avoid inspection stations. In this setting, there is

no deterministic assignment of which facility serves which

customer, as it depends on a particular scenario, i.e., the

outcome from a probability space. In order to minimize

the objective, we need to consider probabilities of possible

interactions between facilities and customers.

One special case of edge probabilities has the form P[w =
1] = p, P[w = ∞] = 1 − p, where w is the weight of an

edge, and 0 < p ≤ 1 is a probability of passing the edge.

As some customers might not be connected to any facility,

the objective is to maximize the expected number of served

customers. This model is used in the Influence Maximization
problem (IM) that is usually not considered as being within

the scope of FL problems due to its higher computational

complexity and different application domain. The IM problem

aims to identify the most influential people in a social network.

It simulates a process of information diffusion, categorizing

all network nodes as influenced (active) or not influenced

(inactive). Specifically, starting with initial set of active nodes

(seeds), information iteratively propagates through edges with

probability p. A seed is the analogue of a facility, and other

nodes (or subset of nodes) are customers with demand 1, that it

is not obligatory to satisfy. Two models of node activation are

possible. In the Independent Cascade model, a node becomes

active if at least one adjacent node was activated in the

previous iteration. In the Linear Threshold model, activation

happens when there are at least θ active adjacent nodes, where

θ is a parameter.

Recently, much attention has been given to two variations

of the IM problem, namely Dynamic Seeding [8] and In-

fluence Minimization. Dynamic Seeding represents a way of

combining time-dependency and probabilities into one model.

Tong et al. [8] propose that new seeds can be added to a
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graph sequentially during the diffusion process. Two patterns

of adding seeds are considered: one node per iteration and

one node after an ongoing propagation is completed. Influence

Minimization is the dual problem of minimizing the number

of active nodes given preallocated seeds, by either removing

nodes [9] (node immunization), removing edges [10], or by

placing seeds of ”opposing” influence [11].

The rest of the paper is organized as follows. In Section II,

we discuss existing generic and domain-specific approaches

that apply to different NS objectives and graph models, includ-

ing a solution to p-median and IM problems for linear graphs.

In Sections III and IV, we consider two examples of the NS

problem, namely Multicapacity Facility Selection (MFS) and

Influence Minimization by Node Immunization (IMNI). We

cover the related literature and describe our proposed solutions

to these problems. Finally, Section V concludes.

II. SOLUTION TECHNIQUES

A. Common Ground

As NS is an optimization problem, common optimization

techniques are applicable. Here, we cover several of them and

describe their applicability to FL and IM problems, supported

by an example.

The simplest class of optimization techniques consists of

greedy heuristics, where top-k nodes are selected according

to some ranking function. This kind of approach is often

applied in cases of high computational complexity [1], [10].

Submodularity of the objective function allows to derive an

approximation guarantee of (1− 1/e) · opt [1].

Other solutions include Linear Programming (LP), Mixed

Integer Programming, and various LP-relaxation based heuris-

tics. They are able to contend with graphs of up to several

thousand nodes and provide flexibility in constraint and ob-

jective formulation. For instance, consider a linear graph with

nodes a1, a2, ..., an. The complexity of an IM problem on a

linear graph is smaller than on a graph with cycles, since

it is relatively easy to calculate the probability of a path

between any two nodes. Pairwise probabilities form a matrix

dij =
∏

k=i+1..j pk−1,k, where 0 < pi,j ≤ 1 is the probability

that edge (ai, aj) survives. For FL problems, dij denotes a

matrix of geodesic distances.

Consider a canonical case of FL, namely the k-center

problem, where we minimize the distance between nodes and

the closest facility by selecting k nodes for new facilities. The

objective function is shown in Eq. 1. Variable xi is an indicator

that ai is selected for a new facility. Variable yij is another

Boolean that captures whether node ai is assigned to facility

aj . A set of constraints in Eq. 2 assures that ai can be asigned

only if aj has a facility and the total amount of new facilities

is k. Due to Eq. 2 and the monotonically increasing d(i, j), the

optimal assignment will always correspond to the assignment

to the closest facility.

min
yij

∑

i

∑

j

dijyij , xj , yij ∈ {0, 1} (1)

yij ≤ xj ,
∑

j

xj = k,
∑

j

yij = 1 (2)

On the other hand, in the IM model, the probability of a

node i being active in a linear graph is equal to

S(i) = 1− (1− dli)(1− dir), (3)

where l and r are indexes of the left and right closest seeds,

respectively. The expected number of active nodes is the sum

of S(i) over all nodes. We can express dli as
∑n

j=1 dji · yji
with the constraint that

∑n
j=i+1 yji = 0, meaning that we

assign only to seeds with a smaller index. One new variable

zij ∈ {0, 1} is used for assignment to a seed with a larger

index in a similar manner. We can linearize the objective

by taking into consideration that probabilities of information

propagation in real-world graphs are small [12]. The resulting

LP objective is presented in Eq. 4 with the corresponding

constraints occurring in Eqs. 5,6,7.

max
yij ,zij

∑

i

∑

j

dijyij +
∑

i

∑

j

dijzij (4)

yij ≤ xj , zij ≤ xj ,
∑

j

xj = k (5)

∀k
k−1∑

i=0

yik ≤ 1,
n∑

i=k+1

zik ≤ 1 (6)

∀k
n∑

i=k+1

yik = 0,

k−1∑

i=0

zik = 0 (7)

We can also find an optimal solution in a linear graph in

polynomial time using Dynamic Programming. Eqs. 8 and 9

show the Bellman equations for the FL and IM problems.

Here, fFL(m, k) says that the cost of the assignment of the k-

th facility (state variable) to node m (control variable) is equal

to the minimum cost of the assignment of the (k− 1) facility

to node j, plus the cost of adding a new facility to the m-th

node (payoff function). The minimization occurs over control

variable j. The cost of the new facility is equal to the sum

of distances to the closest facility over all nodes in the range

j..m. Next, fIM(m, k) has similar meaning, with the payoff

function shown in Eq. 10.

fFL(m, k) = min
1≤j<m

{f(j, k − 1) +
∑

j<i<m

min
x∈{m,j}

dxi} (8)

fIM(m, k) = max
1≤j<m

{f(j, k − 1) + S(j,m)} (9)

S(j,m) =
m∑

x=j

(djx + dxm − djxdxm) (10)

However, in real-world scenarios, graphs have complex

topologies, and LP is a much more powerful tool. LP is

used widely for solving FL problems [1] and enables efficient

solutions to IM problems for arbitrary graph topologies [13].

Sing and Dinh [13] presents a mixed LP and randomized

algorithm. Their solution can handle a network with 1.5K

nodes and 2.7K edges within a time limit of 1h.
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B. Scalable Solutions

Once the scale of the problem increases, NS solutions

exploit more domain-specific and data-driven approaches to

achieve efficiency. For example, geometric graphs allow em-

bedding of clustering, spatial indexing, and pruning based on

spatial location [4]. Another approach is to derive assumptions

about the edge weight distribution in a graph, which allows

to simplify the model [12] and to predict the stochastic

behaviour of customers [9]. Stochasticity is also handled well

by randomized algorithms. Deriving a proper estimator for an

objective leads to an accurate result within a reasonable time

even for large graphs [14].

Recent scalable solutions in the context of FL were intro-

duced for placing a single facility at graph edges. The problem

is called Optimal Location Query (OLQ) [3], [15]. While these

works focus on choosing a point on an edge, they also consider

the question of selecting an edge, which relates to our work.

In their solution, multiple facilities are selected in a greedy

fasion, by repeated application of the single facility procedure.

This approach may have worse accuracy in comparison with

algorithms where the decision about facility location is mutual

for all facilities at once, by means of cancellation of previ-

ous placement decisions (e.g.. the Ford–Fulkerson maxflow

algorithm [16]) or iterative location refinement (e.g., k-means

clustering [17]).

Based on existing best practices in FL and IM, we consider a

combination of traditional LP, randomized algorithms, efficient

shortest path calculation, and data pruning, and we derive new

scalable and more accurate methods for probabilistic and time-

dependent NS models. In the following sections, we present

two real-world NS problems that show the efficiency of our

approach.

III. EXPLORATION-BASED HEURISTIC AND PRUNING ON

DUAL VARIABLES

A. Related Work

In the setting of large road networks, pruning of the search

space can have a dramatic effect on the running time of an

NS algorithm. One particular bottleneck for spatialy-related

problems is efficient shortest path (SP) computation. While

efficient SP solutions exist, e.g., contraction hierarchies [18],

a potentially more efficient approach is to prune SP. Pruning

bounds can be maintained dynamically based on sorted cus-

tomer costs [15]. Another option is to introduce a relaxation

method on primal or dual variables, which is widely used in

flow optimization problems. U et al. [19] show that utilizing

a potential function on nodes yields a tight pruning bound

and allows to significantly descrease SP computations in the

assignment problem. We improve on that result, showing that

we can apply similar technique in the FL problem, thus prining

the majority of SPs in the underlying spatial network.

B. Multicapacity Facility Selection

In real-world scenarios, the capacities of facilities can be

limited due to constraints in time, space, and human resources.

For example, restaurants have a limit on available tables and

warehouses are limited by the storage volume. In both exam-

ples, the contraints are defined by the location. Motivated by

that, we introduce the Multicapacity Facility Selection problem

(MFS), where capacities are assigned to each potential facility

location. The objective of the problem is to select k nodes in

a graph, such that the sum of distances from each customer

to the nearest available facility is minimized. A selected node

can serve up to ci customers, where i is the index of the node.

MFS is closely related to the Capacitated k-median problem,

where a fixed set of capacities can be distributed among the

facilities placed in a graph.

We consider the MFS problem in the context of dockless

bike sharing, where a bike can be left at any place after use.

The rapid growth of companies such as Mobike1, oBike2, and

Ofo3 shows the potential of this new model. However, these

companies suggest using ”preferable” bike docking stations.

Periodically, a service gathers bikes and distributes them to

such stations in order to enable more convenient access to

the bikes. In case a company wants to place new docking

stations, it should consider the available space at each potential

new location. We consider the case of building a dockless

bike service in Copenhagen Municipality, a city with some

of the densest bike traffic in the world. Using data from the

Open Data København Portal4, we determine the locations

of docking stations with available bike slots (Figure 1b). We

assume that new stations can be placed near existing ones with

similar capacity. We distribute bikes around the city according

to daily bike traffic data and then find the k best locations

for new docking stations according to existing capacities and

traffic data.

More specifically, we generate bikes as follows. Bike traffic

is calculated by road-side counters. A counter has a known

location and accumulates the number of bikes that pass by in

each street direction on an hourly basis. Given this informa-

tion, we can perform interpolation to obtain a vector function

�g of ”bike flow” in the city. Magnitude |�g| is presented in Fig.

1a, where the sign indicates the direction of the flow. Then we

calculate the divergence ∇�g = ∂gx
∂x +

∂gy
∂y in each node of a

road network, that is proportional to the expected number of

bikes parked at that node per hour. Finally, we repeat this for

each hour of the day and calculate the variance σ∇�g. After

normalization, we consider the resulting scalar values as an

approximation of the probabilistic distribution of parked bikes.

C. Wide Matching Algorithm

To solve the MFS problem, we propose a so-called Wide
Matching Algorithm (WMA) that iteratively assigns customers

to candidate facilities until there is a subset S containing k
facilities such that each customer is assigned to at least one

facility in S. The novelty of the approach is that each potential

facility has a capacity that limits the number of customers that

can be assigned to it. As a result, each iteration contains a

1https://mobike.com/
2https://www.o.bike/
3http://www.ofo.so/
4http://data.kk.dk/
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(a) Interpolated bike traffic (b) Existing bike docking stations

Fig. 1: Data about bike traffic in Copenhagen Municipality.

reassignment phase, where capacitated facilities may exchange

customers in order to improve the objective function. This

procedure is known as Bipartite Matching, and WMA exploits

an efficient data-driven pruning technique [19], which was

not considered previously for matching in spatial networks.

Moreover, WMA performs SP calculation and matching as

one efficient procedure so that it avoids calculating many

unnecessary paths.

We compare WMA to a baseline solution and a commercial

optimizer while considering quality and runtime. The Gurobi
Optimizer [20] is a solver that uses LP techniques and provides

an optimal solution to the MFS problem. As the baseline, we

implemented an algorithm that divides the input customer set

into k buckets based on spatial proximity and then selects the

centroid of each bucket as a facility. We create such buckets

using a Hilbert curve [21].

We study the performance on a synthetic dataset and the

bike docking problem with 103 bikes. Our results show that

WMA significantly outperforms Gurobi in runtime and has

close to optimal accuracy (Fig. 2). For the bike docking

problem, Gurobi fails to deliver a result within a time limit of

6h with an out-of-the-box solution for SP calculation. Next, we

consider the benefit of taking into account the multicapacities.

Uniform WMA (UF WMA) captures the accuracy of WMA

when facility locations are calculated by assigning average

capacities to all facilities. We see that the accuracy drops.

Also, we see that the inconvenience of customers expressed

by the objective drops as the number of facilities increases.

In future work, we aim to extend WMA to being able to

accommodate customer trajectories by embedding an efficient

Dijkstra-based incremental method to calculate SP between

trajectories and potential facilities.

IV. PROBABILITIC NETWORKS AND INFLUENCE

MINIMIZATION

We proceed to discuss the IM and IMNI problems intro-

duced in Section I. We assume a social network G = (E, V )
with edge probabilities p(v1, v2), ∀(v1, v2) ∈ E. The inverse
graph G−1 is the graph G with all edges inversed. The state-

of-the-art solutions to the IM problem are based on building

Reverse Reachable Sets (RR) [22], [14]. Let us consider a

random node n ∈ V and a scenario g ∈ G−1. All nodes

reachable from n in g form n’s RR set. After sampling n and

g, the best seeds are selected as the nodes that belong to the

most RR sets. Intuitively, the RR sets induced by n indicate

which nodes are likely to influence n if selected.

The RR approach is not directly applicable to IMNI, where

a seed set S is given and a set of nodes for immunization

R is to be defined. Consider a scenario g ∈ G−1 with nodes

u,v reachable from S and an existing path from u to v. If v
is selected for R and removed, then u may still be reachable

from S, unless v is an articulation node that disconnects g.

Thus, the probability of u being activated by S depends on

the number of scenarios where R is a vertex cut, i.e., a set of

vertices that separate u and S into two connected components

if removed.

Previously, the Influence Minimization problem was solved

using greedy heuristics. The simpliest approach is the degree
heuristic, when R contains the nodes with the highest de-

gree [9]. A more efficient greedy solution is presented for

the edge blocking version of the problem [10], where the

influence of a node is predicted with a help of the Bond

Percolation Method. Another greedy solution is presented by

Wang et al. [9] for time-dependent IMNI. Their model implies

probabilities per each pair of nodes with a particular time-

decaying factor. They estimate the global propagation based

on rumor general popularity and individual edge probabilities.

Inspired by the ideas of node sampling and RR, we pro-

pose a novel randomization algorithm for time-independent

IMNI. First, a new virtual node u is added to G with

edges (u, s), ∀s ∈ S : p(u,s) = 1. Then, we sample graph

scenarios g ∈ G using Monte-Carlo simulation. For each g,

we randomly pick a subset of nodes V ′ ∈ V and calculate all

minimal vertex separators between v ∈ V ′ and u. A vertex
separator for vertices u and v is a set of vertices Q such that

removal of Q from g separates u and v into two disconnected

components of g. Set Q is minimal if any subset of Q is

not a vertex separator. We build sets of minimal separators

using an existing algorithm [23]. Finally, R is selected by the

maximization of the cumulative frequences of separators that

contain nodes from R, under the constraint |R| = k.

We test our approach on generated graphs with powerlaw

degree distribution, and the VK social network5. Preliminary

results show that our approach outperforms the naive heuristic

(selection of k nodes with the highest degree), and provides

significantly higher accuracy than random node selection.

5http://vk.com/
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(a) Uniform point distribution (b) Clustered point distribution (c) Bike docking problem

Fig. 2: WMA performance on synthetic and real-world datasets.

V. CONCLUSIONS

In this work, we discuss the general Node Selection (NS)

problem and its applications. We provide a brief overview

of the related literature. We discuss Facility Location and

Influence Maximization as special cases of the NS problem.

More specifically, we consider the problems of Multicapacity

Facility Selection (MFS) and Influence Minimization by Node

Immunization (IMNI) and provide solutions for them. We

report on an experimental evaluation of the MFS solution

that offers evidence of scalability and accuracy. The proposed

solution to the IMNI problem is based on node sampling and

Reverse Reachable Sets. In future work, it is of interest to

develop solution for time-dependent FL and IMNI problems,

and it is of interest to provide a unified NS computation

framework for graph databases.
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