
Skolkovo Institute of Science and Technology

Master Thesis

DATA-DRIVEN ALGORITHMS

FOR SPATIAL NETWORK FLOW PROBLEMS

Student Alvis Logins

Scientific Advisor Panagiotis Karras

Dean of education Clement Fortin

Moscow 2016

Abstract

Given a directed weighted graph, a network flow problem is defined

as an optimization problem with an objective function of a form
∑︀

𝐸 𝑓(𝑒) ·
𝑤(𝑒)→ 𝑚𝑖𝑛, where 𝐸 is a set of edges of a graph, 𝑓 is a flow function that

associates some flow value to each edge and satisfies conservation constraints,

and 𝑤 is a weight (cost) of that edge; the task is to distribute a flow over

network, so as to minimize (or maximize) its total cost, while observing flow

conservation and capacity constraints. In a generalization of the problem,

called Circulation Problem, a lower bound is added on edge flows. Special

cases of such problem include Maximum Flow, Minimum-Cost Maximum

Flow, Minimum Cost Flow, Multi-Commodity Flow Problems, as well as

Bipartite Matching problem and others. Many applications of a circulation

problem deal with spatial data, e.g., traffic analysis, shortest path calculation

in transportation networks, optimal package routing in computer networks,

and assigning clients to services. The Simplified Incremental Algorithm

(SIA) is an algorithm based on incremental subgraph processing and edge

pruning that solves the Assignment Problem while taking advantage of spatial

indexing, graph density, and certain properties of shortest path computation

using the Dijkstra algorithm in bipartite graphs. Previous work has shown

that SIA archives a high percentage of pruned edges and, as a result, good

performance. For the general circulation problem a Cost-Scaling algorithm

is considered as one of the most efficient approaches, yet it does not exploit

any pruning.

In this thesis, we first study the SIA algorithm, analyze its

implementation details, compare it to algorithms for the general circulation

problem applied on the assignment problem, and confirm that SIA

outperforms other existing solutions. Then, we design a novel algorithm,

S-CSA (Cost Scaling Algorithm optimized for spatial data), that combines

an edge-pruning technique similar to the one in SIA with Cost Scaling,

in the context of non-bipartite graphs, and investigate its performance. In

the process, we adapt a Depth-First implementation of the Cost-Scaling

algorithm for use with spatial data and edge pruning. Our experimental

study with different types of synthetic graphs and real-data graphs shows

2

that the performance of S-CSA strongly depends on the initialization of the

scaling parameter and the graph topology, while the fraction of pruned edges

has the strongest influence on performance; in effect, a simplified version of

S-CSA performs well in comparison to both Cost-Scaling and S-CSA with

initialization similar to Cost-Scaling. Last, we analyze the performance of the

aforementioned algorithms in distributed systems.

3

Аннотация

Для направленного взвешенного графа задача о нахождении по

тока определена как оптимизационная задача с целевой функцией вида∑︀
𝐸 𝑓(𝑒) · 𝑤(𝑒) → 𝑚𝑖𝑛, где 𝐸 - набор ребер графа, 𝑓 - функция пото

ка, присваивающая некоторое численное значение потока ребру, и 𝑤 -

вес (стоимость) этого ребра; необходимо распределить поток в сети та

ким образом, чтобы суммарная стоимость потока была максимизирова

на или минимизирована и в каждой вершине сумма входящих и выхо

дящих потоков были равны. В наиболее общей формулировке, задаче

о циркуляции потока, на ребрах также могут быть определены нижние

границы для величины потока. Частными случаями данной задачи яв

ляются задачи о максимальном потоке, о потоке минимальной стоимо

сти, о максимальном потоке минимальной стоимости, о назначениях, и

другие. Области применения задачи о циркуляции потока часто связа

ны с пространственными данными, например, анализ дорожного трафи

ка, построение оптимальных путей пакетов данных в компьютерных се

тях, и распределние клиентов по точкам обслуживания. Алгоритм SIA

(Simplified Incremental Algorithm) предназначен для решения задачи о

назначениях, и основан на последовательном рассмотрении подграфов,

определенных свойствах алгоритма Дейкстры на двудольных графах, и

индексации пространственных данных. По результатам предыдущих ра

бот, SIA позволяет значительно сократить количество используемых при

поиске оптимального потока ребер, благодаря чему показывает хорошую

производительноть. Для общей задачи, алгоритм масштабирования сто

имости потока считается одним из наиболее эффективных, однако не

использует возможности отсечения ребер.

В данной работе исследуется алгоритм SIA, детали его реализации

и приводится сравнительная характеристика с алгоритмами, предназна

ченными для более общих проблем, в которой SIA показывает лучший

результат. Принципы работы SIA используются для разработки нового

алгоритма S-CSA (Cost Scaling Algorithm optimized for spatial data), кото

рый бы решал более общую проблему о циркуляции потока и комбиниро

вал в себе методы отсечения ребер и масштабирование стоимости потока.

4

В процессе разработки, мы исследовали возможности адаптации модифи

кации алгоритма масштабирования стоимости потока для S-CSA, осно

ванной на поиске в глубину. Эксперементальное исследование на различ

ных типах сгенерированных графов и реальных данных показало, что ко

личество отсеченных ребер при выполнении алгоритма S-CSA наиболее

существенно влияет на произодительность, в то же время сильно зависит

от инициализации параметра масшитабирования и топологии графа. В

результате, упрощенная версия S-CSA показывает лучший результат по

сравнению с алгоритмом масштабирования стоимости потока и S-CSA

со схожей инициализацией. Производительность указанных алгоритмов

также проанализирована относительно эффективности использования в

распределенных системах.

5

Table of Content

Introduction . 10

1 Background . 11

1.1 Problem Statement . 11

1.1.1 Minimum Cost Flow problem 12

1.1.2 Flow Maximization 13

1.1.3 Minimum Cost Maximum Flow problem 13

1.1.4 Assignment Problem 14

1.2 Solutions of Network Flow problem 16

1.2.1 Exact Algorithms 17

1.2.2 Distributed Algorithms 19

1.2.3 Parallelization . 21

1.2.4 Dynamic Algorithms 21

1.2.5 Approximate Algorithms 22

1.3 Simplified Incremental Algorithm 25

1.4 Network flow algorithms for spatial data 27

1.5 Cost-Scaling algorithm . 30

1.5.1 Intuition under 𝜖 parameter 32

1.5.2 Variations and Improvements of CSA 33

1.6 Depth-first Cost-Scaling algorithm 34

1.6.1 Implementation details 35

2 Design . 39

2.1 Graph representation . 39

2.2 Modified SIA . 40

2.3 Spatial-Optimized Cost Scaling Algorithm 42

2.3.1 Error parameter dynamics 49

2.4 Pruning in DF-CSA . 50

2.5 Distributed CSA . 51

2.5.1 Raising potentials 51

2.5.2 End of Iteration . 52

2.5.3 Blocking Flow Algorithm 53

2.5.4 Complexity . 53

3 Experiments . 55

6

3.1 Assignment problem and SIA 55

3.1.1 Complete Random Bipartite graphs 55

3.1.2 Sparse graphs . 58

3.1.3 Heap value variation 60

3.2 DF-CSA analysis . 60

3.2.1 Heuristics influence 61

3.3 S-CSA analysis . 63

3.3.1 Graph traversal . 64

3.3.2 Spatial uniformly distributed random data 64

3.3.3 Clustered spatial points 66

3.4 Power Flow optimization 69

Conclusions . 74

References . 75

7

Glossary

Adjacent edges — A pair of edges that share common vertex

Bipartite graph — A graph 𝐺(𝑉,𝐸) where nodes belong to two sets

𝑉1, 𝑉2 such that 𝑉1∩𝑉2 = ∅ and ∀(𝑣,𝑢) ∈ 𝐸 → 𝑣 ∈ 𝑉1, 𝑢 ∈ 𝑉2 or 𝑢 ∈ 𝑉1, 𝑣 ∈
𝑉2

Complete Bipartite graph — A bipartite graph, where each node

from one subset of nodes is connected with each node of another subset.

Objective function — A function which we aim to maximize or

minimize in current optimization problem

Flow — A function that assigns an integer non-negative number to

each edge in the directed graph

Flow conservation constraints — A constraint that states that an

sum of input flow and output flow should be equal to zero for each node in

a graph

Pseudoflow — A flow that does not satisfy flow conservation

constraints

Direct edge — An edge of a graph that is given as an input for a

network flow problem

Hop — While traversing a graph, a hop is a step - traversing from

one node to another along one edge

Inverted edge — An edge that does not exist in initial graph of

a network flow problem, but is added to the graph in order to allow

the algorithm to cancel flow through direct edge which the inverted edge

corresponds to

8

Definitions and Notations

A list of abbreviations for algorithms:

DF — Depth-First

SSSP — Single Source Shortest Path

SSPA — Successive Shortest Path Algorithm

SIA — Simplified Incremental Algorithm

CSA — Cost-Scaling Algorithm

DF-CSA — Depth-First Cost-Scaling Algorithm

S-CSA — Spatial-oriented Cost-Scaling Algorithm

S-DF-CSA — Spatial-oriented Depth-First Cost-Scaling Algorithm

LDA — Local Dominant Algorithm

9

Introduction

Given a graph representation of a road map of a city, where a node

denotes crossroad and each edge has a length equal to a distance between

adjacent crossroads, a common task is to suggest drivers an optimal route

to a destination or to simulate traffic over the map in order to analyze, plan

and design new transportation infrastructures. Another similar task is to

calculate an optimal route of a package in some local area network from one

computer to another, minimizing number of hops between routers that the

package should pass. These two tasks are special cases of a large class of

network flow problems, where a flow should be optimally distributed over a

network.

A problem is well-known and a lot of solutions exist, including classical

algorithms like Hungarian algorithm, Ford-Fulkerson algorithm, Simplex

method, Cost-Scaling algorithm and others, which we will partially cover

in this work. Some of them are designed to solve a general Circulation

problem, others are more specific and may solve such problems as Minimum

Cost Maximum Flow, Maximum Flow, Bipartite Matching problem and

others. Except of managing road traffic and package routing, there are many

applications that requires more efficient solutions. For example, computer

vision[1], embedded systems [2], car pooling [3].

The current widespread of location-based services and growing

interest in distributed systems motivated us to develop a new solution

for a Circulation problem that would exploit a spatial properties of input

data and minimize the communication cost by reducing the number of

active edges. One efficient approach that utilizes the spatial characteristics

and the possibility of fast sorting of outgoing edges was introduced in [4].

The algorithm is designed for bipartite matching problem and exploits a

possibility to prune high fraction of edges while execution successive shortest

path searches. We generalize the algorithm for a circulation problem and

apply a cost scaling method in order to deal with weaker pruning threshold.

The new approach is then tested on generated and real data.

10

1 Background

Network flow problems is a wide set of optimization problems of

routing a flow in the network while minimizing or maximizing its cost. In

real-world applications, a flow can be a road traffic, Internet protocol packets,

a water flow or any other entity that should be somehow distributed over a

network. Many variations of a problem exist, with slightly different problem

statements, objective functions, types of networks and constraints.

In this section, we will formulate Minimum-Cost Circulation problem

as the most general Network Flow problem and describe some special cases.

Then, we will present a brief overview of existing solutions and describe

some of them in details as a preliminary introduction to the novel techniques

proposed in this work.

1.1 Problem Statement

The input data for a Minimum Cost Circulation Problem is a graph

𝐺(𝑉,𝐸) with a set of nodes 𝑉 and a set of directed edges 𝐸. (𝑢,𝑣) ∈ 𝐸

denoted an edge that goes from a vertex 𝑢 to vertex 𝑣. In most of algorithms,

it is useful to have a notion of inverted edges. For a given 𝐸, we denote �̄� as

a set of edges, such that ∀(𝑢,𝑣) ∈ 𝐸 ∃(𝑣,𝑢) ∈ �̄�. Each edge (𝑣,𝑢) from �̄�

is called an inverted edge of (𝑢,𝑣) from 𝐸.

A cost function 𝑐 : 𝐸 → R and a flow 𝑓 : 𝐸 ∪ �̄� → R are functions

that assign a real number to each edge. A cost function shows how much

advantage or disadvantage does every unit of flow bring if assigned to a

particular edge. It can be thought as a weight of an edge, a cost of a flow, or

a spatial distance between two nodes. We say that a flow goes from a node

𝑢 to a node 𝑣 if there is an edge (𝑢,𝑣) ∈ 𝐸 and 𝑓(𝑢,𝑣) > 0.

Additionally, a flow must satisfy conservation constraints: the total

amount of input and output flow for each node must be equal to 0:

∀𝑣 →
∑︁

𝑢:(𝑢,𝑣)∈𝐸

𝑓(𝑢,𝑣)−
∑︁

𝑤:(𝑣,𝑤)∈𝐸

𝑓(𝑣,𝑤) = 0

∑︀
𝑢:(𝑢,𝑣)∈𝐸 𝑓(𝑢,𝑣) is an input flow for the node 𝑣 and −

∑︀
𝑤:(𝑣,𝑤)∈𝐸 𝑓(𝑣,𝑤) is

an output flow for the same node.

11

The flow function must be antisymmetric relating to a set of inverted

edges:

∀(𝑣,𝑤) ∈ 𝐸 ∃(𝑤,𝑣) ∈ �̄� : 𝑓(𝑣,𝑤) = −𝑓(𝑤,𝑣)

This property will be later used in most of solutions.

A graph can contain an upper and lower bounds for a flow on each

edge. We define 𝑙(𝑢,𝑣) and 𝑟(𝑢,𝑣) as lower and upper bounds, respectively.

A flow that satisfies a non-zero lower bound is called a circulation.

Finally, the Minimum-Cost Circulation problem for a graph 𝐺(𝑉,𝐸)

is a minimization problem of a form 1.1 with constraints eq.1.2 and eq.1.3.

min
𝑓

∑︁
(𝑢,𝑣)∈𝐸

𝑓(𝑢,𝑣) · 𝑐(𝑢,𝑣) (1.1)

∑︁
𝑢:(𝑢,𝑣)∈𝐸

𝑓(𝑢,𝑣)−
∑︁

𝑤:(𝑣,𝑤)∈𝐸

𝑓(𝑣,𝑤) = 0 ∀𝑣 ∈ 𝑉 (1.2)

𝑙(𝑢,𝑣) ≤ 𝑓(𝑢,𝑣) ≤ 𝑟(𝑢,𝑣) ∀(𝑢,𝑣) ∈ 𝐸 (1.3)

In our work, we restrict a cost function 𝑐(𝑢,𝑣) and a supply function

𝑠𝑢𝑝(𝑣) to have only integer non-negative numbers. Additionally, in our

experiments we consider the only unit case of all capacities.

For each of problem, maximization and minimization of an objective

function are dual operations in each problem. Given a maximization problem,

a solution for minimization problem can be derived by making all edge costs

negative and incrementing them on a value of a minimum cost in a graph.

Given a total flow for modified costs, applying inverse operations leads to a

minimized flow. Opposite transformation is similar.

Now, we’ll introduce several special cases of the problem and show

how they can be solved by finding an optimal circulation.

1.1.1 Minimum Cost Flow problem

In most of applications it is more convenient to formulate a problem in

the following way. 𝑠 : 𝑉 → R is another function that assigns a real number

to each node, such that sum of total supplies for all nodes is equal to zero∑︁
𝑣∈𝑉

𝑠𝑢𝑝(𝑣) = 0

12

Using this function we can formulate conservation constraint eq.1.2 as eq.1.4.∑︁
𝑢:(𝑢,𝑣)∈𝐸

𝑓(𝑢,𝑣)−
∑︁

𝑤:(𝑣,𝑤)∈𝐸

𝑓(𝑣,𝑤) = 𝑠𝑢𝑝(𝑣) ∀𝑣 ∈ 𝑉 (1.4)

Nodes with positive supply are called sources, and with negative -

destinations. A Minimum Cost Circulation problem with sources and

destinations is called A Network Flow problem and can be reduced to

Minimum Cost Circulation problem in the following manner.

Suppose we have a graph 𝐺(𝑉,𝐸) with a set of sources 𝑆 and set of

targets 𝑇 . Consider a graph 𝐺′(𝑉
⋃︀

𝑝, 𝐸
⋃︀

𝐸1

⋃︀
𝐸2), where 𝑝 is a node with

zero supply, 𝐸1 contain new edges from 𝑝 to each node in 𝑆 and 𝐸2 new

edges from each node in 𝑇 to 𝑝. All weights of new edges must be zero. If we

set 𝑙(𝑢,𝑝) = 𝑟(𝑢,𝑝) = 𝑠(𝑢) and 𝑙(𝑝,𝑤) = 𝑟(𝑝,𝑤) = 𝑠(𝑤) for each 𝑢 ∈ 𝑆 and

𝑤 ∈ 𝑇 , and then set 𝑠𝑢𝑝(𝑣) = 0 for all nodes, then this will be a circulation

problem and an optimal flow in 𝐺′ will be optimal in 𝐺 as well, and will

satisfy eq.1.4.

1.1.2 Flow Maximization

A Maximum Flow problem is a problem of finding maximum possible

flow from a source to a target in a graph with unit weights on edges. This

problem can be solved by finding an optimal circulation in the graph by

setting all edge costs to 0 and creating the new edge from the target to the

source with zero lower bound 𝑙(𝑡,𝑠) = 0 and infinite upper bound 𝑟(𝑡,𝑠) =∞.

By setting a cost 𝑐(𝑡,𝑠) = −1, minimization of circulation cost is equivalent

to maximization of flow amount through the newly added edge. Because

of conservation constraints, this is also equivalent to maximization of flow

amount from the source to the target.

1.1.3 Minimum Cost Maximum Flow problem

Minimum Cost Maximum Flow problem is a problem of finding

maximum flow with the smallest possible cost. Unlike other problems

considered here, this problem is equivalent to the Circulation problem, so

both problems are interchangeable.

13

If Minimum Cost Maximum Flow problem is given, deriving

Circulation Problem goes as follows. First, we must add to a graph an edge

(𝑡,𝑠), similarly to the Flow Maximization problem case. Upper bound is also

set to infinity 𝑟(𝑡,𝑠) = ∞, lower bound is zero 𝑙(𝑡,𝑠) = 0, and a cost is

greater than a cost of any other path in the graph: 𝑐(𝑡,𝑠) = −(𝐶 + 1)𝑛,

where 𝐶 = max𝐸 𝑐(𝑒) and 𝑛 is number of nodes in the graph. If minimum

cost circulation is found, then it is both maximal flow and minimum cost.

It is maximal because adding one unit of flow through (𝑡,𝑠) edge makes the

total cost of a flow smaller than any other path where such unit is not added.

So, the amount of flow through (𝑡,𝑠) will be maximum possible and because

of conservation constraints, this guarantees for a flow to be maximum flow

in the initial graph. Also, minimum circulation contains the minimum flow,

because for each maximum flow uses (𝑡,𝑠) edge at the same capacity and, as

a result, at the same cost. So, minimum circulation must be also minimum

flow in the initial graph without (𝑡,𝑠) edge.

Circulation problem reduces to Minimum Cost Maximum Flow

problem as well. To show this, consider any graph for a Circulation problem,

add source and target nodes without any edges connected to them. The

maximum flow in this network is 0, so a minimum cost flow is actually a

minimum cost circulation.

1.1.4 Assignment Problem

An Assignment problem is a problem of assigning clients to services

according to preferences of each client and capacity constraints. This can be

formulated in terms of graph theory as a bipartite matching problem.

A matching 𝑀 is a set of pairwise non-adjacent edges in the graph,

i.e. ∀𝑣 ∈ 𝑉 |{𝑒 ∈ 𝐸|𝑣 ∈ 𝑒}| ≤ 1. A maximal matching is a matching

such that any edge in 𝐸 ∖ 𝑀 intersects with at least one edge in 𝑀 . A

maximum matching is a matching with a maximum number of edges. A

perfect matching is a matching where ∀𝑣 ∈ 𝑉 ∃𝑒 ∈ 𝑀 : 𝑣 ∈ 𝑒. Every

maximum matching is maximal and every perfect matching is maximum. A

bipartite matching is a perfect matching. So, a bipartite matching problem

is a problem of maximization or minimization of a total cost of a bipartite

14

matching in a weighted graph. We want to select a subset 𝑀 of edges of

the initial bipartite graph, such that each node has one outgoing edge in 𝑀 .

In terms of assignment problem, choosing the outgoing edge for a particular

node 𝑣 to a node 𝑤 that belongs to an opposite subset of nodes means that

a client 𝑣 is assigned to a service 𝑤. A cost of an edge is equal to a level of

desire (or reluctance) of the client to be assigned to the service. This problem

can be generalized by adding capacity constraints, that say that a particular

node can have only some exact number of outgoing edges (can be more than

one) or can have not more than some.

The Assignment problem can be reduced to the Circulation Problem

by adding one source node and one target node. Suppose in a bipartite graph

we have two subsets of nodes: 𝐸1 and 𝐸2. And for each node a capacity is

defined (maximal amount of outgoing edges in 𝑀): 𝑐𝑎𝑝(𝑣). Then, a supply

value of new nodes is stated as follows

𝑠(𝑠𝑜𝑢𝑟𝑐𝑒) = −𝑠(𝑡𝑎𝑟𝑔𝑒𝑡) = min {
∑︁
𝑣∈𝐸1

𝑐𝑎𝑝(𝑣),
∑︁
𝑤∈𝐸2

𝑐𝑎𝑝(𝑤)}

The source node must be connected to each node in 𝐸1, and each

node in 𝐸2 must be connected to the target node. Upper and lower bounds

of that edges are defined by 𝑐𝑎𝑝(𝑣) function for each particular node. For

example, if a node 𝑣 ∈ 𝐸1 can be connected to maximum one node from

𝐸2, then upper bound 𝑟(𝑠,𝑣) = 1. That would mean that no more than one

value of flow can pass through that node. Also, for each edge in an initial

graph we set upper bound 𝑟(𝑣,𝑤) = 1. When an optimal circulation found in

such extended graph, one unit of a circulation trough an edge between two

subsets of nodes is equivalent to choosing the edge as a part of a matching

𝑀 . No more than one unit can go through one edge, so we can "choose"one

edge only once, and all capacity constrains are also satisfied.

In case of strict capacities (for example, when |𝐸1| = |𝐸2| and all 𝑐𝑎𝑝

are equal to one, then we can simplify a structure of a graph by defining

𝑠𝑢𝑝(𝑣) = 𝑐𝑎𝑝(𝑣) for one set and 𝑠𝑢𝑝(𝑤) = −𝑐𝑎𝑝(𝑤) for another. As a result,
we eliminate adding additional source and target nodes, that leads to a better

performance of most algorithms. In the case of non-strict capacities, we also

15

can eliminate additional source and target nodes by adding another node on

the smallest size of a bipartite graph, where we could send "extra"flow as

suggested in [4].

Note, that the Maximum Matching problem is another problem

of finding a perfect matching in a general graph and can not be solved

by circulation cost minimization. At the same time, we can imagine an

assignment problem in a general graph. Suppose we want to distribute several

ongoing cars to available parking places at some moment of time. Such task

can be described as a classical bipartite matching problem, where a weight

of an edge is the shortest path length on the road map. But, this also can

be described as a network flow problem, where we aim to send a unit flow

from each car (serving as a source node in a road network) to a parking place

(serving as a target node with some capacity). We can "combine"two problem

representations and say, that now we are solving assignment problem, but not

in a bipartite graph, but in a general graph, that is a road map. This graph

has nodes that are either a car or a crossroad. A node that represents a

crossroad is a "neutral"node, that has zero supply and that must have an

equality between incoming and outgoing edges. Also, such a node can be

thought as a node in the partially bipartite graph, that is simultaneously a

client and a provider, or that serves as an intermediary between clients and

providers. For example, having a computer network system (LAN), a client

is a PC, a service is an access point to the Internet, and "neutral"nodes

are local routers. This is a classical network flow problem, but still it can

be considered as an assignment problem of PCs to access points. We can

also apply any restrictions in such a system, for example, a list of restricted

connections because of security, or maximal allowed distance between two

nodes.

1.2 Solutions of Network Flow problem

In the next few sections, we will give an overview of some existing

solutions for Circulation Problem and its special cases. Two algorithms, SIA,

and CSA, will be considered in details, since we use them as a basis for

our novel approach. Algorithms could be classified by underlying methods

16

of solution, accuracy, applications, types of input graphs. The solution

can be exact ([4]), approximate with some guarantee ([5]), approximate

without any guarantee, 𝜖-exact or 𝜖-scaled ([6]). New approaches are actively

developing in recent years both in sequential setting [7] and distributed

setting [8, 9]. Parallel implementations can be synchronous and asynchronous.

Asynchronous algorithms have a great advantage over synchronous because

they don’t have any loss of performance caused by a thread waiting and they

do not care about workload distribution between threads. The difference is

well illustrated in [6].

1.2.1 Exact Algorithms

Exact algorithms are ones that guarantee optimality of an objective

function. Most of them are based on iterative shortest path search and

optimization of dual variables, that are represented as potential values on

nodes.

Single Source Shortest Path Algorithm Single Source Shortest

Path problem (SSSP) is, probably, the most common network flow problem.

A classical approach to solving SSSP is Dijkstra algorithm [10]. The problem

is well studied in the literature and more sophisticated approaches can be

used depending on the application. For example, Dial’s algorithm is a special

case of Dijkstra’s algorithm for graphs with integer weights and does not

require a priority queue. It is easy-parallelizable, but the scalability of this

algorithm depends on the maximum weights of edges and shows an acceptable

performance only in case of weights equal to one [11]. If a graph contains large

weights, Bellman-Ford is suggested in case of a large number of processes

and Delta-Stepping algorithm [12] otherwise. BFS is comparable to Delta

Stepping algorithm but BFS is used in order to simplify description.

Hungarian and Successive Shortest Path Algorithms

Originally, Hungarian algorithm [13] was designed to solve assignment

problem, however, later the method was generalized to any transportation

network by Ford and Fulkerson [14]. It is based on primal-dual method. Given

a square matrix of preferences of clients to services, Hungarian algorithm goes

17

in steps and iteratively decreases row and column values, until zero values in

the matrix can be combined with a perfect matching.

Successive Shortest Path Algorithm (SSPA) is a combinatorial

adaptation of Hungarian algorithm in terms of bipartite graph [15]. As in

Ford-Fulkerson algorithm, it uses potential values of nodes and inverted

edges. In this work we will denote potential values as 𝑝(𝑣), defining this

function as a function that maps each node to a real number:

𝑝 : 𝑉 → R

Inverted edges are defined in the problem statement section. SSPA finds

admissible transformations of the graph, based on the shortest path from

a non-assigned client to available service. After the shortest path is found,

all edges are inverted along the path and potentials raised. Evaluating 𝑚

shortest path searches, where𝑚 is a number of clients, SSPA finds an optimal

assignment.

Blossom and Cost Scaling Algorithms

An overview of the evolution of Hungarian-based algorithms is

presented in [7], as well as a new algorithm that is based on blossoms

and linear optimization with both approximate and exact versions for both

bipartite matching and maxflow problems. A blossom is a set of vertices that

are connected in a circle and a subset of edges of a blossom is in maximal

matching. This means, there is a subset of edges that contains exactly one

edge for each vertex. These blossoms are used in order to iteratively build

alternating paths, that is a sequence of vertices that are connected and forms

maximal matching, together with two desolated vertices, one in the beginning

of the sequence and one in the end. Alternating paths then iteratively

alternate in order to include desolated vertices in maximal matching.

Originally, the concept of blossoms was introduced by Edmonds [16]

and then improved by Kolmogorov [1], which developed a way to reduce a

problem to a linear optimization and find augmenting paths in a way that

maximized (minimizes) the total sum of weights in a resulting subset of edges.

He also developed a well-written library in C++, that currently is the best

18

non-distributed software for solving maxflow problem in general graphs, up

to the best of our knowledge.

Later, Goldberg and Tarjan presented an update to their well-known

push-relabel algorithm [17], presented more precise theoretical complexity

estimates and better methods to solve subroutines of the algorithm. In the

context of previously mentioned works, Goldberg showed that the approach of

Duan, which in its turn took several ideas of Kolmogorov, can be represented

in a significantly much simpler way, if expressed in terms of the framework

presented in [18]. Moreover, this simplification leads to a better upper bound.

BlossomV One of the best novels approaches based on the blossom

concept is provided by [1]. BlossomV solves the general matching problem,

that belongs to a convex optimization problems. Therefore, it can be solved

by according software and methods like primal simplex methods, relaxation

methods, dual simplex methods can be applied. The main idea of the

algorithm is to make an iterative reduction of a graph by finding blossoms

- cycles of alternating paths in a graph. Then, the problem is reduced to

convex optimization. In the current thesis, we compare the performance of

this algorithm on a special case of bipartite matching with other approaches.

Primal Simplex Method As we can see from the problem

statement, Circulation problem is a special case of the linear optimization

problem. An efficient adaptation of linear optimization for graphs is presented

by [19] and is also considered as one of the most efficient approaches

nowadays, together with Cost-Scaling algorithm [20].

1.2.2 Distributed Algorithms

In the distributed setting, the development of algorithms for solving

mentioned problems seems not so active as in the sequential case. Most

works are concentrated on finding an approximate solution. Some classic

combinatorial optimization problems such as matching, coloring, dominating

set, or approximations can be solved using small (i.e., polylogarithmic) local

communication [21]. Here we mention some of the complexity results that

might be relevant to the maxflow problem.

19

The lower bound for distributed system for matching problem in

general graphs is 𝑂(log2 𝑛) with constant approximation ratio. Lower bound

shown by [22] is Ω(logΔ/ log logΔ +
√︀

log 𝑛/ log log 𝑛).

Tight lower bound on the communication complexity of approximate

maximum matching in bipartite graphs was shown by [9] and is equal to

Ω(𝛼2𝑘𝑛). It is tight up to poly-logarithmic factors. In related works, they

mention algorithm (Lotker) with 𝑂(log 𝑛) rounds.

In asynchronious networks [23] presents a shortest path algorithm that

converges in a finite number of steps.

The most interesting result in finding approximate maximum flow

in a graph is presented by Ghaffari et al. [8]. They present a near-optimal

distributed algorithm for (1 + 𝑂(1))-approximation of maximum flow in

undirected network using (𝐷 +
√
𝑛)𝑛𝑜(1) communication rounds. Their

approach is based on congestion minimization with gradient descent, where

congestion of an edge is defined as used capacity of an edge divided by its

total capacity.

The notable thing about this work is that the exact calculation of an

objective function, which they derivate in presented framework, is too difficult

to solve exactly, so they compare various methods to build a congestion

approximator 𝑅 - a matrix that would reduce a constrained optimization

problem to an unconstrained, that then could be easily solved by gradient

descent. The basis for building 𝑅 is a generation of a sample of random

graphs over the network, where each graph contains some subset of edges.

This concept was originally called as building graph spanners [24] and a

motivation is to build a simpler representative of a network, that hold some

specific properties, and then by applying an algorithm to this simplified set

of representatives, derive a desired property of the whole network.

This approach became very popular after Bartal introduced hierarchal

decomposition of trees (HDT) [24] and showed that for a random sample of

trees holds a remarkable property: expected value of the ratio of distance in

HST and in original graph is not larger than some threshold. This result is

very powerful as it allows for many problems to first solve the tree instance

of the problem and then to transfer this solution to the original graph while

20

paying only a factor f in the performance guarantee [25]. We can imagine an

example of exploiting the properties of a tree, when a tree is colored in almost

constant time [26] and then chromatic scheduling [27] used for distributed

calculations with dependences.

Recent works in distributed algorithm for exact maximum flow

problem show 𝑂(𝑛2) time and 𝑂(𝑛2𝑚) message complexities [28], that is

comparable to result in we obtained for current algorithm if the diameter is

small.

1.2.3 Parallelization

A good example of a work related to parallelization is presented

by [29]. Authors use Local Dominant algorithm (with 1/2-approximation

guarantee) which is a modification of [30] and [31]. They provide a solution for

multicore (Intel Nehalem and AMD Magny-Cours), manycore (Nvidia Tesla

and Nvidia Fermi), and massively multithreaded (Cray XMT) platforms

with strong emphasis on Cray XMT platform. However, they use native

LD algorithm for multicore and GPU, but they modify it by embedding

some atomic specific commands for Clay XMT. Probably, the performance

of GPU can be improved by modifying the algorithm and considering the

specifications of GPU architecture.

LD algorithm is simple and has a straightforward parallelized and

distributed versions and can be simply used for architecture comparison.

Another way of parallelization is presented in [32]. Authors present

parallel Hungarian algorithm, which has a pretty matrix representation. So,

they reduce the algorithm to a set of matrix operations which can be done

in parallel.

1.2.4 Dynamic Algorithms

Another class of problems is updates and dynamic solutions. This case

has a wide spectrum of applications, especially in the case of approximate

solutions.

21

One of the solutions is presented by [4]. It considers a case for customer

updates in bipartite matching. The solution is based on two observations.

First is that if we update distance function of some customer, then we

can update potentials as follows: 𝑝(𝑡) = max𝑒(𝑞𝑘,𝑡)∈𝐸∧𝑤(𝑞𝑘,𝑡)<0{−𝑑𝑖𝑠𝑡(𝑞𝑘,𝑡) +
𝑝(𝑞𝑘)}, where 𝑡 is a moving customer. This update leads to the elimination of
negative costs and does allow the algorithm to use results calculated for non

updated customers, i.e. to continue running. The second observation is that

if we use a subgraph 𝐸𝑠𝑢𝑏, after an update we can recalculate edges in 𝐸𝑠𝑢𝑏

by using the distance threshold: all edges that are smaller than the largest

edge added so far, must be added to 𝐸𝑠𝑢𝑏 after an update. Additionally, we

fulfill (invert) those edges, which have negative reduced cost.

The technique of inverting edges with a negative reduced cost can

be widely used in any algorithm that uses the notion of reduced cost. For

example, in the CSA after new edge addition or any node potential change

we can rearrange all adjacent edges and this will preserve all algorithm

invariants, i.e. all flows will still be 𝜖-optimal because each affected edge

has non-negative reduced cost. However, this would create a pseudoflow, so

flow refinement must be performed after an update.

Caching can be used in order to apply current solution for real-world

data [33].

1.2.5 Approximate Algorithms

There are several basic approaches for object function approximation.

Since the problem can be solved exactly, the usually approximate algorithm

is significatly faster than exact solutions. In [4] approximation is done

by grouping close objects in space, where closeness in defined by an

approximation parameter and found using R-tree and Hilbert curve.

Local Dominant Algorithm Local Dominant Algorithm (LDA) is

an efficient approximate algorithm for solving the matching problem based

on the notion of dominance [31, 34]. A locally dominant edge is at least as

heavy as any other edge incident its end points. Each node can set a pointer

to its heaviest neighbor. If two nodes point to each other, then the edge is

22

locally dominant. The algorithm goes as follows. First, we set for each node a

candidate node, i.e. a pointer to the heaviest neighbor. Then, if a pair of nodes

is found where both are nodes are stated as heaviest, then the edge between

them is locally dominant. Locally dominant edge is saved and both nodes

are enqueued. The pseudocode is shown on Algorithm 1. A list of locally

dominant edges is saved in 𝑚𝑎𝑡𝑒 property of each node. The algorithm has

both straightforward sequential and parallel implementations.

Algorithm 1 Local Dominant Algorithm

1: Input: 𝐺(𝑉,𝐸)

2: 𝑄 = new queue

3: for all 𝑣 ∈ 𝑉 do

4: 𝑣.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = argmin𝑤:(𝑣,𝑤)∈𝐸 𝑐(𝑣,𝑤)

5: 𝑤 = 𝑣.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

6: if 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 == 𝑣 then

7: 𝑣.𝑚𝑎𝑡𝑒 = 𝑤, 𝑤.𝑚𝑎𝑡𝑒 = 𝑣

8: 𝑄.𝑝𝑢𝑠ℎ(𝑣),𝑄.𝑝𝑢𝑠ℎ(𝑤)

9: while not 𝑄.𝑒𝑚𝑝𝑡𝑦 do

10: 𝑣 = 𝑄.𝑝𝑜𝑝

11: 𝑣.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = argmin𝑤:(𝑣,𝑤)∈𝐸 𝑐(𝑣,𝑤)

12: 𝑤 = 𝑣.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

13: if 𝑤.𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 == 𝑣 then

14: 𝑣.𝑚𝑎𝑡𝑒 = 𝑤, 𝑤.𝑚𝑎𝑡𝑒 = 𝑣

15: 𝑄.𝑝𝑢𝑠ℎ(𝑣),𝑄.𝑝𝑢𝑠ℎ(𝑤)

Some papers provide an approximation guarantee. For example, [29]

proposes an algorithm that gives a solution for a maximization problem where

a total resulting sum of weights is not less than half of total sum of the

exact solution. The half-approximation guarantee in [29] and similar works is

based on the article [31], where a variation of LDA, called LAM, is described.

Lemma 3 and Lemma 4 in [31] is a proof of the approximation quality. Lemma

1 in this work refers to the Lemma 3 in [31]. In fact, it described the principle

of assignment in LDA. The proof just folllow the pseudocode of the algorithm.

23

Lemma 1. Algorithm LAM starts with an empty matching and an edge (a,b)

is only added is a and b are free and neither a nor b are adjacent to a free

vertex with an edge of higher weight than (a,b).

We provide a full version of the second lemma as Lemma 2 in this

work. the approach is not "symmetric"when we try to solve minimization

problem. Please, refer to [31] for full original versions of lemmas.

Lemma 2. Algorithm LAM computes a matching 𝑀𝐿𝐴𝑀 with at least 1
2 of

the edge weight of a maximum weight matching 𝑀𝑀𝑊𝑀 , where 𝑀𝑊𝑀 is

minimum weight matching.

Proof. Lev 𝑉𝐿𝐴𝑀 be the matching vertices in 𝑀𝐿𝐴𝑀 and 𝑉𝑀𝑊𝑀 in 𝑀𝑀𝑊𝑀 .

Throughout the algorithm the following holds

𝑊 (𝑀𝐿𝐴𝑀) >
1

2
𝑊 ({{{𝑢,𝑣} ∈𝑀𝑀𝑊𝑀 |𝑢 ∈ 𝑉𝐿𝐴𝑀 ∨ 𝑣 ∈ 𝑉𝐿𝐴𝑀})

When 𝑀𝐿𝐴𝑀 = ∅, adding (𝑎,𝑏) to 𝑀𝐿𝐴𝑀 increases 𝑊 (𝑀𝐿𝐴𝑀) by

𝑤(𝑎,𝑏), but also the right side may increase. If (𝑎,𝑏) ∈ 𝑀𝑀𝑊𝑀 , the right

hand side only increases by 1
2𝑤(𝑎,𝑏). Otherwise, let (𝑎,𝑐),(𝑏,𝑑) ∈ 𝑀𝑀𝑊𝑀

be the possible edges adjacent to (𝑎,𝑏). The choise of matching edge (𝑎,𝑏)

excluded the possible choise of (𝑎,𝑐) and (𝑏,𝑑) throughout the rest of the

algorithm. There are the only two edges by which the subset of 𝑀𝑀𝑊𝑀 may

increase, i.e. the right hand side may only increase by 1
2(𝑤(𝑎,𝑐) +𝑤(𝑏,𝑑)). If

𝑐 ∈ 𝑉𝐿𝐴𝑀(𝑑 ∈ 𝑉𝐿𝐴𝑀) before wi add edge (𝑎,𝑏), then (𝑎,𝑐) ((𝑏,𝑑)) is already

in the subset of 𝑀𝑀𝑊𝑀 . If 𝑐 /∈ 𝑉𝐿𝐴𝑀 (𝑑 /∈ 𝑉𝐿𝐴𝑀), i.e. c (d) is free, Lemma

1 insures that 𝑤(𝑎,𝑏) > 𝑤(𝑎,𝑐) (𝑤(𝑎,𝑏) > 𝑤(𝑏,𝑑)). Therefore, the value on

the right hand side cannot increase by more than 𝑤(𝑎,𝑏). At the end, LAM

terminates with a maximal matching and the following holds

𝑊 (𝑀𝐿𝐴𝑀) >
1

2
𝑊 ({{{𝑢,𝑣} ∈𝑀𝑀𝑊𝑀 |𝑢 ∈ 𝑉𝐿𝐴𝑀∨𝑣 ∈ 𝑉𝐿𝐴𝑀}) =

1

2
𝑊 (𝑀𝑀𝑊𝑀)

Lemma 1 remains valid for a minimum cost problem: an edge {𝑎,𝑏}
is only added if a and b are free and neither a nor b are adjacent to a free

vertex with an edge of smaller weight than {𝑎,𝑏}. The proof has direct

24

inverted version. But Lemma 2 does not. The equation that must be proved

for minimum-weight version is the following:

𝑊 (𝑀𝐿𝐴𝑀) > 2𝑊 ({{{𝑢,𝑣} ∈𝑀𝑀𝑊𝑀 |𝑢 ∈ 𝑉𝐿𝐴𝑀 ∨ 𝑣 ∈ 𝑉𝐿𝐴𝑀})

After adding an edge {𝑎,𝑏} to 𝑀𝐿𝐴𝑀 , 𝑊 (𝑀𝐿𝐴𝑀) increases by 𝑤({𝑎,𝑏}) and
the right hand side may increase. The key point is that right hand may

increase, but may not. If it increases, then the equation holds because of the

inverted version of Lemma 3. But, if both edges 𝑐 and 𝑑 are already added,

then right hand side is not increased at all and the equation is not valid any

more.

At the same time, in a full graph (that is equivalent to the spatial data)

and with random weights the optimal minimum sum of weights decreases

with the number of nodes. This is an experimental result obtained in the

experiments described later. The intuition is that if a number of nodes is big

enough, an exact algorithm can find a pair of matching with minimum weight

for almost every node. So, if a number of nodes is very big, then each node

is matched using an edge of zero-weight and the total sum is almost zero. In

this situation, every mistake of an approximate algorithm could increase the

total sum (final result) many times (& 104). This could be a good motivation

for using an exact algorithm for a min-weight matching problem instead of

an approximate one, even if the latter is faster.

1.3 Simplified Incremental Algorithm

Simplified Incremental Algorithm (SIA) [4] is an algorithm for solving

a bipartite matching problem with capacity constraints. Authors propose

several improvements of the SSPA (Successive Shortest Path Algorithm)

that lead to the great increase in the performance. SIA uses concepts of

inverted edges, potentials, iterative shortest path search, that makes it

similar to such algorithms as Ford-Fulkerson, Hungarian, Cost-Scaling and

others. Algorithm 2 illustrates the complete version of SIA. We used original

notations of authors. 𝑞𝑖 ∈ 𝑄, 𝑝𝑖 ∈ 𝑃 are nodes from the first and the second

subsets of 𝑉 of a bipartite graph 𝐺(𝑉,𝐸) accordingly. 𝜏 is a potential. 𝑞.𝛼,

𝑝.𝛼 are minimum distance values that were calculated during the shortest

25

path search. 𝑑𝑖𝑠𝑡() is an edge cost function. 𝑒 refers to an edge. 𝑣.𝑝𝑟𝑒𝑣 is the

previous node in the shortest path of a node 𝑣. 𝑤 is a reduced cost of an

edge. 𝑣𝑚𝑖𝑛 is a final node in the shortest path. 𝑣𝑚𝑖𝑛 is always a non-full 𝑝𝑖.

The distinctive feature of SIA is its pruning technique of edges. The

algorithm tries to find the shortest path from the source 𝑞𝑖 to a non-full

target 𝑝 in a subset of edges, called 𝐸𝑠𝑢𝑏. This subset is initialized as the

empty set (line 2). There are 𝛾 iterations in the algorithm (line 3), where 𝛾 is

a number of customers, i.e. nodes in the first subset of 𝑉 . At each iteration, a

shortest path between non-full nodes of opposite subsets of a bipartite graph

is found. Each shortest path is found using only edges in 𝐸𝑠𝑢𝑏. Lines 10-21

show the shortest path search. A threshold (line 10) guarantees that the

shortest path that was found in 𝐸𝑠𝑢𝑏 using Dijkstra (line 13) is the shortest

in 𝐸 as well. Lines 23-25 reverses all edges along the shortest path. Lines

26-32 are responsible for updating potentials in the graph. Maximum value

of potential value 𝜏 ′𝑚𝑎𝑥 is maintained on line 33.

The pruning goes as follows. At each iteration of the algorithm a

heap 𝐻 (line 4) stores values 𝑞.𝛼 + 𝑑𝑖𝑠𝑡(𝑞𝑘,𝑝𝑚), i.e. a minimum distance to

the enheaped node plus a cost of an edge to the next nearest neighbor of the

node. New values are enheaped each time a shortest path algorithm discovers

a new node (line 21) or when a minimum distance to some old node becomes

updated (line 21). Using the heap, 𝐸𝑠𝑢𝑏 becomes distance-bounded, i.e. after

the shortest path search any edge that is not in 𝐸𝑠𝑢𝑏, but still belongs to the

graph, is not smaller than some value. Authors [4] prove that such threshold

guarantees that the shortest path in 𝐸𝑠𝑢𝑏 is also the shortest in 𝐸 by showing

that any path with any edge 𝑒 ∈ 𝐸∖𝐸𝑠𝑢𝑏 is longer than current shortest path.

Intuitively, the threshold on line 10 shows that we should add more edges in

𝐸𝑠𝑢𝑏 while current minimum distance the target is larger than a minimum

reduced cost of any "relevant"edge, where "relevant"is such edge that can

influence the shortest path, and reduced cost is a positive cost 𝑤 that is

guaranteed to be smaller than total cost of the shortest path.

Additionally to SIA, authors suggest Path Update Algorithm (PUA),

that is the extension of SIA. It allows for every Dijkstra execution to partially

reuse results of previous executions. Algorithm 3 illustrates PUA.𝐻𝑑 refers to

26

the heap of the last Dijkstra execution. The intuition behind the algorithm is

the following. After each insertion of new edge, we continue running Dijkstra,

which was terminated in the previous step because of lack of nodes or

infeasibility of a solution. Before doing that, we update minimum distances

of all nodes which were affected by the newly inserted edge. Another heap,

called 𝐻𝑓 , is used for that reason. In fact, this is another instance of Dijkstra,

which starts from the inserted nodes and finishes on any node that exists in

a heap 𝐻𝑑, remained from the previous iteration (before new edge insertion).

From now on we will refer to SIA with PUA extension as just SIA.

The success of the algorithm is motivated by the tightness of the

threshold. In bipartite graphs, the total length of the path tends to be small.

In particular, in a complete bipartite graph, the length is no longer than 1,

even if total hops the algorithms does during the graph traversal in Dijkstra

algorithm can be much larger. Intuition is that each second hop in any

shortest path found by Dijkstra is equivalent to canceling some assignment,

because each second hop must go through inverted edge that has a negative

cost and indicates a possibility of canceling flow through a direct edge.

1.4 Network flow algorithms for spatial data

SIA takes advantage out of a possibility to incrementally retrieve next

nearest neighbors of each node. In case of large graph this is a significant

benefit in terms of both memory and time. In the next chapter, we will

discuss the design of a new approach that also proceeds edges for each node in

increasing order of their length. Although the requirement of a list of outgoing

edges being sorted can be achieved by graph preprocessing, we focus on the

spatial data as an application of new algorithms. Spatial data management is

an actively developing topic and does not require additional preprocessing of

data. In this section we briefly discuss the possible state-of-the-art approaches

to index spatial data and incrementally retrieve nearest neighbors.

Spatial indexing is a common approach to deal with big spatial data.

It is used in Spatial Joins [35], Spatio-Textual Joins [36], Road Map Shortest

Path Queries [37, 38]. Caching can be applied for spatial indexing [39]. The

dominant indexing method for spatial data is R-tree [40, 35, 36]. It uses

27

Algorithm 2 Simplified Incremental Algorithm (SIA)

1: 𝜏𝑚𝑎𝑥 := 0, 𝐸𝑠𝑢𝑏 := ∅
2: for 𝑙𝑜𝑜𝑝 := 1 to 𝛾 do

3: 𝐻 := new min-heap; set 𝑣.𝛼 :=∞∀𝑣 ∈ 𝐸𝑠𝑢𝑏

4: select a non-full 𝑞𝑖 ∈ 𝑄 in round-robin fashion

5: 𝑞𝑖.𝛼 := 0, 𝑣𝑚𝑖𝑛.𝛼 :=∞
6: 𝑝𝑗 := first NN of 𝑞𝑖 in 𝑃

7: insert ⟨𝑒(𝑞𝑖,𝑝𝑗), 𝑑𝑖𝑠𝑡(𝑞𝑖,𝑝𝑗)⟩ into 𝐻

8: while 𝑣𝑚𝑖𝑛.𝛼 > 𝑇𝑜𝑝𝐾𝑒𝑦(𝐻)− 𝜏 ′𝑚𝑎𝑥 do

9: de-heap ⟨𝑒(𝑞𝑘,𝑝𝑗),𝑘𝑒𝑦⟩ from 𝐻

10: insert 𝑒(𝑞𝑘,𝑝𝑗) into 𝐸𝑠𝑢𝑏

11: 𝑣𝑚𝑖𝑛 := Dijkstra(𝑄,𝑃,𝐸𝑠𝑢𝑏)

12: for all visited 𝑞 ∈ 𝑄 do

13: if 𝑞 is not in 𝐻 then

14: 𝑝𝑗 := get next NN of 𝑞 in 𝑃

15: insert ⟨𝑒(𝑞,𝑝𝑗),𝑞.𝛼+ 𝑑𝑖𝑠𝑡(𝑞,𝑝𝑗)⟩ into 𝐻

16: if 𝑞.𝛼 changed in Line 13 then

17: update 𝑞.𝛼 in 𝐻

18: 𝑝𝑚 := next NN of 𝑞𝑘 in 𝑃

19: insert ⟨𝑒(𝑞𝑘,𝑝𝑚),𝑞.𝛼+ 𝑑𝑖𝑠𝑡(𝑞𝑘,𝑝𝑚)⟩ into 𝐻

20: 𝑣 := 𝑣𝑚𝑖𝑛

21: while 𝑣.𝑝𝑟𝑒𝑣 ̸= ∅ do

22: reverse 𝑒(𝑣,𝑣.𝑝𝑟𝑒𝑣) in 𝐸

23: 𝑣 := 𝑣.𝑝𝑟𝑒𝑣

24: for all visited nodes 𝑣𝑖 do

25: 𝑣𝑖.𝜏 := 𝑣𝑖.𝜏 − 𝑣𝑖.𝛼 + 𝑣𝑚𝑖𝑛.𝛼

26: for all edges 𝑒(𝑣𝑖,𝑣𝑗) incident to 𝑣𝑖 do

27: if 𝑣𝑖 ∈ 𝑄 ∪ {𝑠} then
28: 𝑤(𝑣𝑖,𝑣𝑗) := 𝑑𝑖𝑠𝑡(𝑣𝑖,𝑣𝑗)− 𝑣𝑖.𝜏 + 𝑣𝑗.𝜏

29: if 𝑣𝑖 ∈ 𝑃 then

30: 𝑤(𝑣𝑖,𝑣𝑗) := −𝑑𝑖𝑠𝑡(𝑣𝑖,𝑣𝑗)− 𝑣𝑖.𝜏 + 𝑣𝑗.𝜏

31: 𝜏 ′𝑚𝑎𝑥 = max{𝑣.𝜏 |𝑣 ∈ 𝑄 ∧ 𝑣.𝛼 6 𝑇𝑜𝑝𝐾𝑒𝑦(𝐻)}

28

Algorithm 3 Path Update Algorithm

1: 𝐻𝑓 := new min-heap

2: insert ⟨𝑞, 𝑞.𝛼⟩ into 𝐻𝑓

3: while 𝐻𝑓 is not empty do

4: de-heap top node 𝑣𝑖 (with the lowest 𝑣𝑖.𝛼 value) from 𝐻𝑓

5: for all edges 𝑒(𝑣𝑖,𝑣𝑗) ∈ 𝐸𝑠𝑢𝑏 outgoing from 𝑣𝑖 do

6: if 𝑣𝑗.𝛼 > 𝑣𝑖.𝛼 + 𝑤(𝑣𝑖,𝑣𝑗) then

7: 𝑣𝑗.𝛼 := 𝑣𝑖.𝛼 + 𝑤(𝑢,𝑣); 𝑣𝑗.𝑝𝑟𝑒𝑣 := 𝑣𝑖

8: if 𝑣𝑗 ∈ 𝐻𝑑 then

9: update 𝑣𝑗.𝛼 in 𝐻𝑑

10: else

11: if 𝑣𝑗 ∈ 𝐻𝑓 then

12: update 𝑣𝑗.𝛼 in 𝐻𝑓

13: else

14: insert ⟨𝑣𝑗, 𝑣𝑗.𝛼⟩ into 𝐻𝑓

Minimum Bounding Boxes (MBR) for spatial object indexing. Having MBR

for each object, R-tree builds a tree structure, where leafs are MBRs that

contain objects of arbitrary form and nodes are MBRs that contain MBRs of

their children. Figure 1.1 shows an example of an R-tree. The bottom level

(red) contains leafs with objects. The performance of R-tree depends on

the node splitting strategy, such as linear and quadratic algorithms [41, 42].

Several R-tree modifications were proposed in the literature, such as R*-tree

and R+-tree [35]. Some of them may use bulkloading, i.e. building a tree

starting from the leafs instead of incremental object insertion. For example,

Hilbert curve can be used to define a linear order for spatial objects and group

spatial data according to this order. This will put spatially close objects to

one group with a high probability and to one branch of R-tree as a result.

Additionally to spatial join queries, R-trees allow to efficiently

evaluate k-NN queries, as well as obtaining nearest neighbors iteratively

[43, 44]. This feature is exploited by SIA as a part of the pruning technique,

that reduces necessary memory requirements and accelerates edge sorting for

each particular node. We will use this feature as well in our novel approach for

29

general graphs. Recently a novel algorithm was introduced that uses highly

efficient concurrent priority queues in order to evaluate Breadth-First k-NN

queries in parallel [45]. This algorithm can be embedded in both our algorithm

and SIA as future work.

1.5 Cost-Scaling algorithm

Cost-Scaling Algorithm (CSA) is an exact algorithm for Circulation

Problem. Originally, it was proposed by Goldberg and Tarjan in 1990 [17],

recently new time bounds and implementation details were presented in

[18]. The algorithm also belongs to Hungarian-based (see section "Exact

algorithms"), as it also exploits principles of inverting edges, node potentials

and successive shortest path searches. In fact, the core of the algorithm is

SSPA, that is a successive subproblem in CSA which is solved with iteratively

inreasing precision.

In order to describe the algorithm in details, we should mention some

more definitions. A pseudoflow is a flow that does not satisfy conservation

constraints, i.e. the sum of input and output flows may not be equal. If an

input flow in a node is prevailing, then we call the node an excess. If an

output flow is greater, then the node is a deficit. 𝑐𝑝 is a reduced cost of an

edge.

𝑐𝑝(𝑣,𝑤) = 𝑐(𝑣,𝑤) + 𝑝(𝑤)− 𝑝(𝑣)

𝑙(𝑣,𝑤) = ⌊𝑐𝑝(𝑣,𝑤)𝜖 ⌋ + 1 is a distance function that defines a distance between

two adjacent vertices for shortest-path search.

A circulation 𝑓 is 𝜖-optimal with respect to a price function 𝑝 if for

every arc (𝑣,𝑤), we have

𝑐𝑝(𝑣,𝑤) < −𝜖⇒ 𝑓(𝑣,𝑤) = 𝑢(𝑣,𝑤) (1.5)

The pseudocode is presenten in Algorithm 4. It performs in iterations.

One iteration is an iteration of a 𝑤ℎ𝑖𝑙𝑒 loop in 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑀𝑎𝑥𝐹 𝑙𝑜𝑤 function.

In each iteration there are 3 phases:

1) Decrease 𝜖 by 2

2) 𝑟𝑎𝑖𝑠𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠

30

3) Compute blocking flow in 𝐺𝐴

Last two phases are repeated until 𝑓 becomes a circulation. At the end of

each iteration a circulation is 𝜖-optimal. This is the main invariant of the

algorithm. 𝜖 value decreases from the maximum edge cost value to 1
|𝑉 | . Since

we consider integer capacities, 𝜖-optimality with 𝜖 = 1
|𝑉 | is equivalent to the

total optimality [17].

Algorithm 4 Cost-Scaling Algorithm (CSA)

1: function CalculateMaxFlow(𝐺,{𝑠,𝑡})
2: 𝜖 = 𝐶, 𝑝 = 0, 𝑓 = 0 ◁ 𝐶 - global maximum cost

3: while 𝜖 ≥ 1
𝑛 do

4: (𝜖,𝑓,𝑝) = 𝑟𝑒𝑓𝑖𝑛𝑒(𝜖,𝑓,𝑝)

5: return 𝑓

6: function Refine(𝜖′,𝑓 ′,𝑝′)

7: 𝜖 = 𝜖′/2, 𝑓 = 𝑓 ′, 𝑝 = 𝑝′

8: for all (𝑣,𝑤) ∈ 𝐸𝐴 do

9: 𝑓(𝑣,𝑤) = 𝑢(𝑣,𝑤)

10: while 𝑓 is not a circulation do

11: raisePotentials(𝜖,𝑓 ,𝑝)

12: 𝑓 = 𝑓+ a blocking flow in 𝐺𝐴

13: return (𝜖,𝑓,𝑝)

14: function RaisePotentials(𝜖,𝑓 ,𝑝)

15: add new vertex 𝑟

16: for all excesses 𝑣 do

17: add arc (𝑟,𝑣) with 𝑑(𝑟,𝑣) = 0

18: Initialize Dial’s SSSP algorithm with root in 𝑟

19: repeat

20: Make Dial’s SSSP algorithm iteration w.r.t 𝑙

21: until first deficit 𝑢 is found

22: for all 𝑣 : 𝑑𝑚𝑖𝑛(𝑟,𝑣) < 𝑑𝑚𝑖𝑛(𝑟,𝑢) do

23: 𝑝(𝑣) = 𝑝(𝑣) + (𝑑𝑚𝑖𝑛(𝑢)− 𝑑𝑚𝑖𝑛(𝑣))𝜖

31

The correctness of CSA is based on maintaining the 𝜖-optimality of

the flow. This property we describe in Lemma 3. CSA has some improtant

properties. By linear programming duality, 0-optimal circulation is optimal.

A circulation is optimal if and only if there exists a potential function such

that all residual arcs have non-negative reduced costs. A circulation is optimal

if and only if the recidual graph has no cycles of negative cost. [17, 18] A more

detailed analysis of properties of the algorithm, as well as analysis of similar

algorithms, like Negative Cycle Cancelling and Capacity Scaling algorithms,

are available in [46].

Lemma 3. 𝜖-opitimality of a circulation 𝑓 guarantees the optimality of 𝑓 in

CSA

Proof. The lemma is equivalent to the Theorem 2.3 in [17]. Consider a simple

cycle in 𝐺𝑓 . The 𝜖-optimality of 𝑓 implies that the reduced cost of the cycle

is at least −𝑛𝜖 > −1. The reduced cost of the cycle equals its original cost,

which must be integral and hence nonnegative. So, there are no negative

cycles in a recidual graph, so a circulation is optimal.

1.5.1 Intuition under 𝜖 parameter

𝜖 parameter in CSA is the most significant specialty that differs

this algorithm with SIA or any other algorithm that uses graph traversal,

inverting edges and potential function. Here are some suggestions and notes

about what intuition can be applied towards this parameter based on the

observations and features of CSA.

First of all, this parameter is a parameter for coarse-graining the flow.

After each iteration 𝜖-optimality holds, that means a flow saturates each arc

where reduced cost 𝑐𝑝(𝑣,𝑢) = 𝑐 + 𝑝(𝑣) − 𝑝(𝑢) > −𝜖. So, we say that flow is

𝜖-optimal. It can differ from the optimal one not more than of 𝜖.

Another role that this parameter has is the speed of change of

potential function. The potential throughout the algorithm "suggests"the

flow where is the direction to deficits. When traversing a graph, the algorithm

tries to go to the direction that is not yet "discovered that contains nodes

32

farthest from the excess nodes. This is archived by increasing the cost of

going in the direction towards the excess.

One more very important observation is that 𝜖 parameter shows a

balance between weight and hop priorities in the graph traversal, where a

hop is one "step"between two nodes along one edge. In other words, the

number of hops is an alternative distance cost measure where a cost of a

path between two nodes is equal a number of edges between two nodes along

that path. For example, for a linear graph with 3 nodes sequentially connected

𝐴 → 𝐵 → 𝐶, where a weight of the first edge is 2 and the second one is 3,

the cost of the total path is 5 and there are two hops in that path.

The reason why 𝜖 shows the balance is that this parameter is added to

the each reduced cost of any edge during Dijkstra shortest path search. So,

if the parameter is small, Dijkstra goes as usual and searches for the shortest

path according to the weights of edges. But if 𝜖 is large, then at each iteration

Dijkstra prefers to reduce the number of hops, because each hop increments

total cost of the path at least on 𝜖 that is more than most of the weights in

the graph. For example, suppose there are two possible paths from source to

target in a graph with one edge and two edges respectively. The first path

contains one edge with a weight that is greater that the sum of two weight

in the second paths. If 𝜖 is small, the first path is preferable because weights

are the true argument. In the opposite case, the second path is preferable,

because the total cost of the second path is at least 2𝜖 that is greater than

𝜖+ 𝑤 with any weight 𝑤, since 𝜖 > 𝑤 with high probability.

1.5.2 Variations and Improvements of CSA

Many variations of CSA have been proposed in the literature. The

same principle of increasing precision was presented in original paper [17],

where capacity scaling is used instead of cost scaling. Both capacity and cost

scaling also can be combined [47].

In the latest work of Goldberg et al. [18], authors present a novel

time upper bound for bipartite minimum matching problem that is equal to

𝑂(
√
𝑟𝑚 log𝐶). Since the same framework is used as in maxflow problem case,

this lead to the time bound of 𝑂(
√
𝑟𝐷 log𝐶) rounds, where 𝑟 = min |𝑉1|,|𝑉2|.

33

1.6 Depth-first Cost-Scaling algorithm

Lemon library [48] provides a very efficient implementation of CSA.

The solution includes a slightly different approach for raising potentials and

contains several heuristics that are described below.

Potential values are changed during DFS traversal of a graph. This is a

major difference between current implementation and the original presented

by Goldberg. If a node does not have adjacent admissible edges, then it is

relabeled according to the following formula:

We define 𝐸𝑓 = {(𝑣,𝑤) ∈ 𝐸|𝑓(𝑣,𝑤) < 𝑢(𝑣,𝑤)} as a set of residual

arcs and 𝑒𝑓(𝑣) =
∑︀

(𝑤,𝑣)∈𝐸 𝑓(𝑤,𝑣). A vertex 𝑣 is an excess if 𝑒𝑓 > 0 and a

deficit if 𝑒𝑓 < 0.

𝐸𝐴 = {(𝑣,𝑤) ∈ 𝐸𝑓 |𝑐𝑝(𝑣,𝑤) < 0} is defined as a set of admissible arcs

and 𝐺𝐴 is admissible subgraph with edges 𝐸𝐴, accordingly.

A function 𝑓 : 𝐸 → 𝑅 is a pseudoflow if it satisfies two conditions:

1. 𝑓(𝑣,𝑤) = −𝑓(𝑤,𝑣)
2. 𝑓(𝑣,𝑤) ≤ 𝑢(𝑣,𝑤), where 𝑢(𝑣,𝑤) is capacity constraint.

𝑝← 𝑝− (min 𝑐𝑝 + 𝜖)

where 𝑐𝑝 = ±𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑝[𝑡𝑎𝑟𝑔𝑒𝑡] − 𝑝[𝑠𝑜𝑢𝑟𝑐𝑒] and minimum value is

taken over all adjacent non-saturated edges.

An intuition behind this formula is the following. Since we are

considering all outgoing edges (including inverted edges), 𝑝 = 𝑝[𝑠𝑜𝑢𝑟𝑐𝑒].

So, we get

𝑝 = 𝑝[𝑠] = 𝑝[𝑠]− 𝑤𝑒𝑖𝑔ℎ𝑡+ 𝑝[𝑡]− 𝑝[𝑠]− 𝜖 = 𝑝[𝑡]− 𝑤𝑒𝑖𝑔ℎ𝑡− 𝜖

𝑐𝑝 = 𝑤𝑒𝑖𝑔ℎ𝑡− 𝑝[𝑡] + 𝑝[𝑠] = 𝑤𝑒𝑖𝑔ℎ𝑡− 𝑝[𝑡] + 𝑝[𝑡]− 𝑤𝑒𝑖𝑔ℎ𝑡− 𝜖 = −𝜖

As a result, we get a new admissible arc for the arc with a minimum

cost, such that 𝜖-optimality in the graph is preserved. Furthermore, we are

trying to maximize the number of new admissible arcs for the processed node

when changing the potential. This is done by choosing maximal possible

decrease of the potential.

34

The formula is actually the same for latest Goldberg, because 𝑙 =

𝑐𝑝/𝜖+1 is 𝑙 = 𝑐𝑝+ 𝜖, but multiplied by 𝜖. That means maximum distance in

Dijkstra now is not 3𝑛, but 3𝑛 * 𝜖.
Because of this behavior, we’ll use the notation of Depth-First Cost

Scaling Algorithm (DF-CSA) referring to the implementation of CSA by

authors of Lemon library.

1.6.1 Implementation details

In this section, we will describe the implementation in details. The

code is presented in Algorithm 5. There are several significant improvements

over the simple cost-scaling, that are used in the library.

GOE supply type Greater or equal supply type is supported by the

algorithm. The realization of this feature is done by adding one additional

"root"node, that have an arc to each other node. The costs of such arcs are

zero, but the capacities are set separately for direct and inverse arcs. For

direct arc from a node to the root node is equal to an excess value obtained

after calculation of a feasible flow. The sum of such excesses is equal to

the total sum of supply in the graph, i.e. all excess supply provided by the

problem. For an inverse arc to the same node from the root, the capacity is

equal to the sum of supplies plus 1.

Internal Method Three internal methods are implemented: Push,

Augment, and Partial Augment. The last one is stated as default one and

the most efficient. These are methods how the base operation is performed.

In Push method, a flow is moved only on one admissible arc at once. In the

augmenting method, a flow is moved on admissible paths from a node with

excess to a node with the deficit. Partial augment is a combination, when a

flow is moved on admissible arcs from excess to a deficit, but only up to some

maximum length.

Heuristics There are two implemented heuristics: priceRefinement

and globalUpdate. These heuristics improve the potential function

throughout the algorithm. Detailed description available in [20]. One

35

heuristic, called speculative arc fixing, is suggested by authors as a future

work.

Potential refinement heuristics introduces an additional step at

the beginning of each phase to check if the current solution is already

(𝜖/𝛼)-optimal. This step attempts to adjust the potentials to satisfy the

(𝜖/𝛼)-optimality conditions, but without modifying the flow. If it succeeds,

the refining procedure is skipped and the next phase begins. Results of [20]

verified that this heuristic substantially improves the overall performance of

the algorithm in most cases.

Global Update heuristics is called if too much relabels during one

iteration appeared. The basis for this heuristic is the observation that if there

are two subsets of nodes 𝑆 and 𝑆, there are no admissible arcs between them,

all deficit nodes are in 𝑆 and at least one active node is in 𝑉 ∖𝑆, then the

potential of nodes in 𝑆 can be increased by 𝜖 without violating 𝜖-optimality.

36

Algorithm 5 DF-CSA

1: function Initialization

2: 𝑝← 0, 𝑒𝑥𝑐𝑒𝑠𝑠𝑒𝑠← 𝑠𝑢𝑝𝑝𝑙𝑦

3: Saturate all arcs with 𝑐𝑜𝑠𝑡 < 0

4: 𝜖 = max𝑖 𝑐𝑜𝑠𝑡(𝑖) · 𝑛
5: Find feasible flow by Push-Relabel algorithm

6: Check feasibility by running Push-Relabel

7: function Cost-scaling(Graph)

8: Initialization

9: Push or Augment method

10: if Solution is not optimal then

11: Run Bellman-Ford and update potentials

12: Shift potentials

13: Handle non-zero lower bounds

14: function Augment(Maximum Distance)

15: path = FindPath(Maximum Distance)

16: AugmentPath(path)

17: function AugmentPath(Path)

18: for all nodes in the path do

19: Increase flow on min{𝑟𝑒𝑠𝐶𝑎𝑝, 𝑒𝑥𝑐𝑒𝑠𝑠} ◁ Maintain only residual

capacities and excesses, not flows

20: Push to Ω if there is an excess

37

Figure 1.1 — A sample of R-tree structure

Algorithm 6 DF-CSA FindPath function

1: function FindPath(Maximum Distance)

2: Saturate arcs with negative 𝑐𝑝

3: Active nodes Ω← excesses

4: while There are active nodes do

5: Pop nodes with negative excess from Ω

6: 𝑣 ← pop from Ω

7: while Path is less than Maximum Distance and 𝑣 is Excess do

8: for all Out arc 𝑒 of 𝑣 do

9: if 𝑒 is not saturated then

10: Current node ← next neighbor : 𝑐𝑝 < 0

11: if Cycle is found then return Cycle

12: Calculate min 𝑐𝑝 for edges of current node

13: 𝑝[current node]− = min 𝑐𝑝 + 𝜖

14: Current node ← path.previous

15: Global Update Heuristics

38

2 Design

2.1 Graph representation

Internal graph representation in all algorithms is based on adjacency

list principle, used in such libraries as Lemon library and Ligra library [49].

It implies storing a list of ids of target nodes of each edge 𝑁𝑔𝑏. Edges in

𝑁𝑔𝑏 are sorted by a source node, i.e. for each source node, all outgoing edges

are stored near each other in 𝑁𝑔𝑏. Another list 𝐹𝑖𝑟𝑠𝑡𝑂𝑢𝑡 indicates where

a set of outgoing edges for a particular node starts. This approach is highly

efficient, as it exploits such low-level acceleration techniques as processor

caching and branch prediction. Separate arrays store values of costs, an id

of correspondent inverted edge (or direct edge, accordingly), a list of ids of

source and target nodes for each edge, a boolean array that states if an edge

in inverted, and finally an array that stored an available capacity. Another

array stores the current excess values for each node. Note, that this set of

arrays allows skipping explicit storage of current flow, an upper bound of a

flow and supply values of nodes. However, this approach does not allow to

dynamically add new edges, so instead of continuous array 𝑁𝑔𝑏 and a list

𝐹𝑖𝑟𝑠𝑡𝑂𝑢𝑡, a two-dimensional array is used, where the first dimension is an

id of a node, and the second dimension is a dynamic list of neighbors, each

representing an outgoing edge.

In this representation, inverted edges are utilized the same way as

direct ones. One approach is a two-dimensional array of output edges that

contains only those edges which have a non-zero available flow, we found that

the approach of monotonic increase of the array is significantly faster for the

used case of unit capacities. This is due to the "alternating-path"behavior

of and hence the necessity of removing empty edges after each flow increase

and adding inverted edge to a neighbor. For S-DF-CSA, we do not take

into consideration adding edges as well, in order to compare with original

DF-CSA. We retained the continuous versions of an adjacency list 𝑁𝑔𝑏 and

𝐹𝑖𝑟𝑠𝑡𝑂𝑢𝑡 and implemented edge addition by a new array 𝐿𝑎𝑠𝑡𝑂𝑢𝑡 that

stores the last edge that was "activated"so far for each node.

39

2.2 Modified SIA

In this section, we derive a possible improvement over SIA algorithm.

Firstly, we would like to note, that, according to the definitions provided

in [4], in this section we consider PUA (Path Update Algorithm), that is

a modification over SIA, that allows successively update results of Dijkstra

shortest path computation while adding new edge in 𝐸𝑠𝑢𝑏 (see Section 1 for

details), however the basic idea remains the same. Our experiments confirm

that SIA without PUA is significantly slower and does not have enough

benefit from incremental edge addition since the algorithm has to rerun

Dijkstra each time a new edge is added and a cost of this operation surpasses

a benefit from pruning.

In the case of spatial data, it is important to note, that shortest path

computation as a subroutine in algorithms that use the notation of inverted

edges, has a slightly different meaning comparing to a single shortest path

computation in a general graph. When computing shortest path in a graph

with inverted edges, some hops may go trough inverted edges and, as a

result, a flow through inverted edge may be increased. Such operation, as

was mentioned before, is equivalent to canceling of a certain amount of flow

along a direct edge, that corresponds to the inverted one.

Especially this is important to remember in case of bipartite matching,

because while running an algorithm, the shortest path can contain hundreds

of edges while the total cost will not be greater than an average edge weight.

This is one of the reasons why pruning proposed in SIA has a very high rate

of pruned edges. For bipartite case, however, a total length of shortest paths

are anyway quite small, as will be illustrated in Section 3.

In spite of the small total length of shortest paths and unitary length

domination for a bipartite case, Dijkstra calculation remains a bottleneck for

the algorithm. If a node hasn’t been assigned correctly, reassigning can lead

to dozens of hops in the shortest path and rapid increase of a potential value

of many visited nodes. In SIA, a threshold that guarantees a feasibility of

last Dijkstra execution is the following:

𝑣𝑚𝑖𝑛.𝛼 > 𝑇𝑜𝑝𝐾𝑒𝑦(𝐻)− 𝜏 ′𝑚𝑎𝑥

40

In this equation, according to definitions in the paper, 𝑣𝑚𝑖𝑛 is a

minimum distance to a target (node with negative supply, if using network

flow definitions), 𝑇𝑜𝑝𝐾𝑒𝑦(𝐻) is a top key of the global heap and 𝜏 ′𝑚𝑎𝑥 is

a maximal value among potentials of nodes that belong to the first subset

of bipartite graph. Global heap stores a sum of shortest distance to each of

visited nodes and corresponding potential:

𝑔𝑙𝑜𝑏𝑎𝑙𝐻 ← min
𝑣𝑖𝑠𝑖𝑡𝑒𝑑

𝑣.𝛼+ 𝑝(𝑣)

Increasing a length of the shortest path and a great number of nodes

with updated potentials may lead to a perceptible influence of maintaining

𝜏𝑚𝑎𝑥 value on a performance. If a non-complete bipartite graph is used, or

there are any additional restrictions on connections, or a general graph is

used instead of bipartite (as we will show further), the problem may become

even worse.

A new value in the heap that does not need any potential maintaining

is presented in the equation 2.1. It allows skipping any potential maintaining

since it uses only the potential value of a node that we currently are

considering (a node that is being updated or a newly visited node). The

Lemma 4, based on the Theorem 3.7 in [4], proves the optimality of a

matching in SIA with the new threshold. We will use notations presented

in this thesis.

𝑔𝑙𝑜𝑏𝑎𝑙𝐻 ← 𝑤𝑒𝑖𝑔ℎ𝑡− 𝑝(𝑣) (2.1)

Lemma 4. Consider an edge set 𝐸𝑠𝑢𝑏 ⊆ 𝐸 and a shortest path in 𝐸𝑠𝑢𝑏 from

a source to a target, where for each node 𝑣 that was visited during shortest

path computation, the equation 2.2 holds.

∀(𝑣,𝑤) ∈ 𝐸 ∖ 𝐸𝑠𝑢𝑏 → 𝑐(𝑣,𝑤)− 𝑝(𝑣) > Θ (2.2)

If a total cost of the shortest path is smaller than Θ, then the shortest path

in 𝐸𝑠𝑢𝑏 is also the shortest path in 𝐸.

Proof. Suppose there is a shortest path 𝐴 from a source to a target in 𝐸𝑠𝑢𝑏,

such that the equation 2.2 holds for each node in the path. Let there be

another path 𝐵 that is shorter, but includes at least one edge 𝑒 from the set

41

𝐸𝑠𝑢𝑏 ∖𝐸. Such path must contain at least one edge of type (𝑣,𝑤) ∈ 𝐸𝑠𝑢𝑏 ∖𝐸,
where 𝑣 is a visited node during shortest path computation. Otherwise, there

can be no connection (continuous path) from the source node to the edge 𝑒,

since the source node is a visited node. Let 𝑐𝑝 be a reduced cost of the

edge (𝑣,𝑤). The total cost of 𝐵 must be at least 𝑐𝑝 large, because 𝑐𝑝 > 0

(flow feasibility property of the algorithm). At the same time, because of

non-negativity of potentials, the following holds:

𝑐𝑝 = 𝑐(𝑣,𝑤) + 𝑝(𝑤)− 𝑝(𝑣) ≥ 𝑐(𝑣,𝑤)− 𝑝(𝑣) > Θ

So, the total cost of 𝐵 is at least as large as the reduced cost of one edge in

𝐵, that is larger than the total cost of 𝐴.

Despite the fact, that the new threshold condition is weaker than the

original one, it exploits the benefit of ignoring any potential values except

a potential value of the enheaped edge itself. This could lead to a better

performance for some types of graphs.

2.3 Spatial-Optimized Cost Scaling Algorithm

In this section, we present a new algorithm that combines CSA

and a pruning technique of SIA. We call it Spatial-optimized Cost Scaling

Algorithm (S-CSA), since it exploits a possibility of incremental nearest

neighbor search, as SIA does. In order to describe the algorithm, we prove

several lemmas first. We use the CSA notation of the reduced cost of an edge

𝑐𝑝(𝑣,𝑤) = 𝑐(𝑣,𝑤)+𝑝(𝑤)−𝑝(𝑣) and the length function 𝑙(𝑣,𝑤) = 𝑐𝑝(𝑣,𝑤)+𝜖.

The contribution of one edge in the shortest path search is equal to the length

function value on that edge. In each lemma we considered a graph 𝐺(𝑉,𝐸)

with distance-bounded edge subset 𝐸𝑠𝑢𝑏 ⊆ 𝐸.

One of the differences between CSA and S-CSA is that all costs in

S-CSA are multiplied by 𝛼 · 𝜖. Distance function 𝑙 is changed accordingly:

instead of 𝑙 = ⌊𝑐𝑝𝜖 ⌋+1, in S-CSA 𝑙 = 𝑐𝑝+𝜖 is used. The same modifications are

applied to the pruning threshold and minimum 𝜖 value requirement (1 instead

of 1
|𝑉 |). This allows eliminating float number operations while calculating

flows throughout the algorithm.

42

Lemma 5. Let 𝑓 be an 𝜖-optimal pseudoflow in 𝐸𝑠𝑢𝑏. If eq. 2.3 holds, then

𝑓 is also 𝜖-optimal in 𝐸.

∀𝑣 ∈ 𝑉 → min
𝑤∈𝐸∖𝐸𝑠𝑢𝑏

𝑐(𝑣,𝑤)− 𝑝(𝑣) + 𝜖 > 0 (2.3)

Proof. Since 𝑓 is 𝜖-optimal in 𝐸𝑠𝑢𝑏, then

∀(𝑣,𝑤) ∈ 𝐸𝑠𝑢𝑏 → 𝑐𝑝(𝑣,𝑤) < −𝜖⇒ 𝑓(𝑣,𝑤) = 𝑢(𝑣,𝑤)

where 𝑢(𝑣,𝑤) is a capacity of the edge. Eq. 2.3 imply that

∀(𝑣,𝑤) ∈ 𝐸 ∖ 𝐸𝑠𝑢𝑏 → min
𝑤∈𝐸∖𝐸𝑠𝑢𝑏

𝑐(𝑣,𝑤)− 𝑝(𝑣) + 𝜖 > 0

Because of the positiveness of 𝑝, we have

𝑐𝑝(𝑣,𝑤) > 𝑐(𝑣,𝑤)− 𝑝(𝑣) > −𝜖

So, if a reduced cost is too small, then an edge is guaranteed to be in 𝐸𝑠𝑢𝑏,

where the 𝜖-optimality is true.

∀(𝑣,𝑤) ∈ 𝐸 → 𝑐𝑝(𝑣,𝑤) < −𝜖⇒ (𝑣,𝑤) ∈ 𝐸𝑠𝑢𝑏

Lemma 6. Let sp be the shortest path between an excess 𝑠 and a deficit 𝑡 in

𝐸𝑠𝑢𝑏 according to the length function 𝑙 : 𝐸 → N ∪ {0}. Let 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣) be a

shortest path length from 𝑠 to 𝑣 and Θ be defined by eq. 2.4. If eq. 2.5 holds,

then sp is also the shortest path in 𝐸.

Θ = min
𝑣∈𝑠𝑝
{𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣) + min

𝑤∈𝐸∖𝐸𝑠𝑢𝑏

𝑐(𝑣,𝑤)} (2.4)

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑡) ≤ Θ− max
𝑣∈𝑠𝑝 :𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣)<Θ

𝑝(𝑣) + 𝜖 (2.5)

Proof. Suppose there is a path from 𝑠 to 𝑡 that contains at least one edge

(𝑢′,𝑤′) from 𝐸 ∖ 𝐸𝑠𝑢𝑏 with a total length smaller than length of sp. Since

every path is continuous and has at least one common node 𝑠, then there

should be at least one node 𝑢 ∈ 𝑠𝑝 : (𝑢,𝑤) ∈ 𝐸 ∖ 𝐸𝑠𝑢𝑏. Each path throught

(𝑢,𝑤) is at least as long as 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑢) + 𝑙(𝑢,𝑤), because the total length of

43

the path is a sum of 𝑙 function values and 𝑙 > 0 for each edge in the graph

because of the 𝜖-optimality invariant. By definition,

𝑙(𝑢,𝑤) = 𝑐(𝑢,𝑤) + 𝑝(𝑤)− 𝑝(𝑢) + 𝜖

Let 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑡) be a sp length and 𝑚𝑖𝑛𝑑𝑖𝑠𝑡′(𝑡) be a shortest path length

that goes throught (𝑢,𝑤). Given eq. 2.5 and taking into consideration non

negativity of 𝑝 and 𝑐 functions, we have

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑡) 6 Θ− max
𝑣∈𝑠𝑝 :𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣)<Θ

𝑝(𝑣) + 𝜖 6

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑢) + 𝑐(𝑢,𝑤)− max
𝑣∈𝑠𝑝 :𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣)<Θ

𝑝(𝑣) + 𝜖 6

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑢) + 𝑐(𝑢,𝑤)− 𝑝(𝑤) + 𝜖 6

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑢) + 𝑐(𝑢,𝑤)− 𝑝(𝑤) + 𝜖 6

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑢) + 𝑐(𝑢,𝑤) + 𝑝(𝑢)− 𝑝(𝑤) + 𝜖 6 𝑚𝑖𝑛𝑑𝑖𝑠𝑡′(𝑡)

Contradiction.

The complete pseudocode of S-CSA is presented in Algorithm 7.

W.l.g., we describe an algorithm in terms of spatial data as an input. Spatial

data is described by a set of nodes in space with some of them marked

as source and target nodes. Spatial index (R-tree 𝑅) is used in order to

obtain iteratively nearest neighbor for each node. This operation is denoted

as 𝑅.𝑁𝑁(𝑣) → 𝐸 for a node 𝑣. 𝑅.𝑁𝑁(𝑣) can be thought as an abstract

function that returns next smallest edge of a node. It can be done by any

other index, or, in the case of general graphs, by iteration through sorted

edges for each node. In the pseudocode, we omit a special case when there

are no more edges to add for a particular node, but there is such possibility,

so this must be covered in the full version of the code. Additionally to that,

we use the following conventions:

— 𝐶 = max𝑒∈𝐸 𝑐(𝑒)

— A source node is an excess which is used as a start node in a Dijkstra

execution

— 𝑉𝑒 is a subset of vertices that are excesses (input flow is greater than

output).

44

— 𝑉𝑑 is a subset of vertices that are deficits

— 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣) is a minimum distance from a source node in the current

Dijkstra Execution, according to the length function 𝑙(𝑣,𝑤) = 𝑐𝑝(𝑣,𝑤) + 𝜖.

— 𝛼 is a parameter that states the pace of decreasing of 𝜖 at each

iteration. In this work, we use 𝛼 = 16.

— In order to simplify notations we assume that for each edge (𝑣,𝑤),

(𝑤,𝑣) is an inverted edge, i.e. for each node pair there is only one-direction

direct edge.

Heap-based Dijkstra algorithm is used for the shortest path search

from a source node to any deficit. It retrieves as an input a source node

𝑠, a subset of edges 𝐸𝑠𝑢𝑏 and a heap 𝐻𝑑 and array 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 which it uses

as an initial setup. 𝐻𝑑 is used in order to reuse results from the previous

unsuccessful attempt to find the shortest distance, that failed because of

the threshold violation. Dijkstra returns a list of edges in a shortest path

from 𝑠 to a target deficit 𝑡, a target node 𝑡, a new resulting heap 𝐻𝑑 and

𝑚𝑖𝑛𝑑𝑖𝑠𝑡 array. 𝑡 can be None if there is no path from a source to a deficit. The

correctness of such approach is proved in Lemma 7. We call𝐻𝑑 a correct heap

if Dijkstra execution based on 𝐻𝑑 leads to correct 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 values. 𝑠 node is

fixed. Lemma 7 also shows that PUA algorithm (see Section about SIA), that

uses the additional heap for updating Dijkstra heap, is not necessary.

For example, consider 4 nodes {𝐴,𝐵,𝐶,𝐷}, where 𝐴 is a excess and

𝐷 is a deficit. The topology is depicted on Figure 2.1. Dashed edge is an edge

which is not yet discovered. Suppose Dijkstra is executed on the graph. First,

A is enheaped. Then, A is deheaped, B and C enheaped. At this moment the

heap contains 2 nodes - B and C, and𝑚𝑖𝑛𝑑𝑖𝑠𝑡 array contains values: A:0, B:1,

C: 10, D:∞. The heap together with mentioned𝑚𝑖𝑛𝑑𝑖𝑠𝑡 values are obviously

correct, that means if Dijkstra starts with such values, it will obviously finish

with the same result as with empty initial heap. Now suppose Dijkstra runs

until the end. Final 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 looks like A:0, B:1, C:10, D: 21, and the final

heap is empty. Now, we add new edge - BC and update 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 according to

S-CSA algorithm. New 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(C) = 3 and C is enheaped. This heap and

array state are also correct, because if Dijkstra continues execution, then 𝐷

45

will be updated in one step, and distance to D and C is the same as it would

be if Dijkstra runs starting from A.

Figure 2.1 — Example of Dijsktra Execution

The Algorithm 7 goes in iterations, each has several steps. For each

𝜖 value (line 3), we first saturate all edges with negative reduced cost (lines

6-10), then a flow is increased until there are no excesses left (lines 11-29). In

order to preserve 𝜖-optimality after the flow increase, we first run an SSSP

algorithm (lines 12-25) and increase potentials for those nodes (lines 26-27),

where a distance from an excess is shorter than a distance to the nearest

deficit. Then, we increase a flow along the path from an excess to a deficit

(lines 26-27). SSSP algorithm runs on a subset of edges 𝐸𝑠𝑢𝑏. New edges are

added to 𝐸𝑠𝑢𝑏 (lines 16-18) until the shortest path found is guaranteed to

be the shortest path in 𝐸 (line 15). Theorem 1 proves the correctness of the

algorithm.

Lemma 7. If 𝐻𝑑 is a correct Dijkstra heap in 𝐸𝑠𝑢𝑏 for a source node 𝑠

and an array of 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 values, then 𝐻𝑑 is also a correct Dijkstra heap for

𝐸𝑠𝑢𝑏 ∪ (𝑣,𝑤) if

1) 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑤)← min{𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑤),𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣) + 𝑙(𝑣,𝑤)}
2) 𝑤 is in 𝐻𝑑 if 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 becomes updated

Proof. If 𝑤 is not enheaped and 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 is not updated, the correctness is

trivial. Suppose, we have a correct 𝐻𝑑 and 𝑤 is enheaped. This preserves the

correctness of Dijkstra algorithm. There are two possibilities. First, if a new

𝑚𝑖𝑛𝑑𝑖𝑠𝑡 is greater than current top value of 𝐻𝑑. Then, (1) and (2) together

are equivalent to one iteration in Dijkstra algorithm. If it is smaller, then

the next iteration of Dijkstra algorithm will start from 𝑣 and as a result all

46

𝑚𝑖𝑛𝑑𝑖𝑠𝑡 values that should be influenced by a new edge (i.e. all nodes that

already have been visited by Dijkstra but after adding new edge a shorter

distance has become available) eventually will be updated. So, 𝐻𝑑 is still

correct since it will eventually lead to a correct 𝑚𝑖𝑛𝑑𝑖𝑠𝑡.

Theorem 1. Resulting flow in S-CSA is an optimal solution of a Circulation

Problem.

Proof. We show that 𝜖-optimality invariant is preserved in our algorithm,

the same as in CSA algorithm. Lemma 3 proves that holding the invariant

guarantees the optimality.

An admissible edge is an edge with a negative reduced cost is negative.

If a flow is changed only for admissible edges, then 𝜖-optimality preserves

because, after saturating admissible edge an inverted edge becomes non-full,

but if a direct edge has negative reduced cost, then it is positive for an

inverted edge according to the formula of a reduced cost. The same for an

admissible inverted edge.

We prove the invariant by induction. At the beginning 𝑝(𝑉) = 0, so

the invariant holds. Suppose at the beginning of the iteration 𝜖-invariant

holds. After decreasing 𝜖 by 𝛼, some edges may violate 𝜖-optimality. By

saturation of such edges, a flow becomes again 𝜖-optimal for a smaller 𝜖.

Lemma 5 guarantees that all such edges in 𝐸 become saturated. After

saturation, a flow may become a pseudoflow. While there are excesses (a

pseudoflow is not a flow), we push a flow from excesses to deficits along

admissible paths. Invariant holds during raising flow as was mentioned above.

If there are no admissible paths, potentials are increased by finding SSSP from

an excess to a deficit. Lemma 6 proves the correctness of SSSP step.

Potential is increased for each visited in SSSP step node on a value of

𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑡)−𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣). We refer to the Lemma 6 in [18] that proves that

this change of potential values is equivalent to the following: while there is

no path from an excess to a deficit - increase by 𝜖 potential of all nodes that

are reachable from 𝑠 by admissible edges. Furthermore, there is a proof that

any 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 value is either infinity (a node was not reached by SSSP) or is

47

Algorithm 7 S-CSA

1: Input: 𝑉 , 𝑅

2: 𝐸𝑠𝑢𝑏 = ∅, 𝜖 = 𝐶, 𝑝(𝑉) = 0, 𝑝𝑚𝑎𝑥 = 0

3: while 𝜖 > 1 or |𝑉𝑒| > 0 do

4: 𝜖← 𝜖/𝛼

5: for all 𝑣 ∈ 𝑉 do

6: while 𝑐(𝑅.𝑁𝑁(𝑣))− 𝑝(𝑣) + 𝜖 < 0 do

7: 𝐸𝑠𝑢𝑏 ← 𝑅.𝑁𝑁(𝑣)

8: for all 𝑤 : (𝑣,𝑤) ∈ 𝐸𝑠𝑢𝑏 do

9: 𝑓(𝑣,𝑤)← 𝑢(𝑣,𝑤) ◁ Saturate the edge

10: 𝑓(𝑤,𝑣)← 0 ◁ Free the inverted edge

11: while |𝑉𝑒| ≠ ∅ do
12: 𝐻,𝐻𝑑 ← empty min-heaps

13: 𝑠← any node from 𝑉𝑒

14: 𝐻 ← 𝑐(𝑅.𝑁𝑁(𝑠𝑡𝑎𝑟𝑡))

15: while 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑡) > 𝐻.𝑇𝑜𝑝𝑉 𝑎𝑙𝑢𝑒− 𝑝𝑚𝑎𝑥 + 𝜖 or 𝑡 = None do

16: (𝑣,𝑤)← 𝑅.𝑁𝑁(𝐻.𝑇𝑜𝑝𝐾𝑒𝑦)

17: Deheap (𝑣,𝑤) from 𝐻

18: 𝐸𝑠𝑢𝑏 ← (𝑣,𝑤)

19: if 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑤) > 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣) + 𝑙(𝑣,𝑤) then

20: 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑤)← 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣) + 𝑙(𝑣,𝑤)

21: 𝐻𝑑 ← 𝑤

22: 𝑠𝑝, 𝑡,𝐻𝑑,𝑚𝑖𝑛𝑑𝑖𝑠𝑡← Dijkstra(𝑅.𝑁𝑁 , 𝐸𝑠𝑢𝑏, 𝐻𝑑, 𝑚𝑖𝑛𝑑𝑖𝑠𝑡)

23: for all visited 𝑣 do

24: 𝐻 ← 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣) + 𝑐(𝑅.𝑁𝑁) ◁ Update the heap

25: 𝑝𝑚𝑎𝑥 ← max𝑣∈𝑉 :𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣)<𝐻.𝑇𝑜𝑝𝑉 𝑎𝑙+𝜖 𝑝(𝑣)

26: for all visited 𝑣 do

27: 𝑝(𝑣)← 𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑡)−𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑣) ◁ Update the heap

28: for all 𝑒 ∈ 𝑠𝑝 do ◁ Push maximum available flow from 𝑠 to 𝑡

29: 𝑓(𝑒)← max𝑒′∈𝑠𝑝{𝑢(𝑒)− 𝑓(𝑒)}

48

less than 3𝑛𝜖. We do not exploit this property because we use a heap-based

Dijkstra.

Increasing a potential of each reachable node by 𝜖 does not break the

invariant. Suppose we have two sets of nodes 𝑆 and 𝑆, where 𝑆 are those

which are reachable by accessible edges and 𝑆 which are not. If we increase

by 𝜖 all potentials in 𝑆, then reduced costs of all edges that have adjacent

nodes both in 𝑆 or both in 𝑆 do not change, since potentials of both nodes are

changed on the same value. Consider an edge (𝑣,𝑤), which partially lie in one

set, partially in another (it can be both 𝑣 ∈ 𝑆 or 𝑣 ∈ 𝑆): since one adjacent

node is not in 𝑆, then 𝑐𝑝 > 0. When a potential is changed, 𝑐𝑝 can change not

more than on 𝜖, so 𝑐𝑝 > −𝜖 after raising potentials, that is 𝜖-optimal value.

This proves the invariant after increasing potentials in S-CSA and finishes a

proof of holding the invariant thought the algorithm.

2.3.1 Error parameter dynamics

As in CSA, 𝜖 can be thought as an error parameter, that allows a

circulation be approximately optimal. In S-CSA we use decreasing of the

parameter the same way as in original CSA, but with the denominator of

𝛼 = 16. However, in the proof of Theorem 1, that proves the correctness of

the algorithm, the only obligatory property of 𝜖 for the correctness of the

algorithm is that at the end of execution 𝜖 must be small enough (smaller or

equal to 1) to guarantee the optimality of the circulation. At each iteration of

the algorithm where we scale 𝜖, there is no any condition on how it is scaled.

The change in 𝜖 defines the number of edges that violates 𝜖-optimality and

hence must be saturated. On the one hand, this number should be minimized

to increase performance. On the other hand, slowing down this step, we might

increase the performance of Dijkstra execution by reducing a number of hops

needed for reaching a target.

A discrete function 𝜖 = 𝜖(𝑇𝑖), where 𝑇𝑖 is an iteration number, is a

possible parameter of the algorithm that could dramatically influence the

performance. The only condition on the function is lim𝑖→∞ 𝜖(𝑇𝑖) = 1. It

can even violate monotonicity. For example, if during the execution a lot of

very large edges have been added to 𝐸𝑠𝑢𝑏, then it is likely that increasing 𝜖

49

will bring more benefit than decreasing or remaining the same. Note, that

an extreme case of the function is 𝜖(𝑇𝑖) = 1. This makes S-CSA a simple

generalization of SIA on a general graph and cancels any cost scaling. We

compare this case with S-CSA described in Algorithm 7.

2.4 Pruning in DF-CSA

As was mentioned in Section 1, DF-CSA is one of the most efficient

implementations of CSA. We also suggest a simple pruning technique for DF

CSA, called Spatial-optimized Depth-First Cost Scaling Algorithm (S-DF

CSA). The technique is based on the assumption that each node either has all

outgoing edges sorted or can obtain them incrementally in the heap manner,

similarly to S-CSA.

The algorithm is the same as DF-CSA (Algorithm 5), but we only

consider some subset of edges 𝐸𝑠𝑢𝑏 and after each for loop at line 25, for a

current node 𝑣 we add next smallest outgoing edges from 𝐸 ∖ 𝐸𝑠𝑢𝑏 to 𝐸𝑠𝑢𝑏

that satisfy the following equation:

𝑐(𝑅.𝑁𝑁(𝑣))− 𝑝(𝑣) 6 min
𝑢:(𝑣,𝑢)∈𝐸𝑠𝑢𝑏

𝑐𝑝(𝑣,𝑢) (2.6)

Here we use the same notation 𝑅.𝑁𝑁 as in previous section. Lemma 8 proves

the correctness of S-DF-CSA.

Lemma 8. If distance to the next nearest neighbor of a node 𝑣 satisfies the

equation 2.7, then the current minimum reduced cost is also minimum among

all outgoing edges of a node in the full graph. Hence, the value which is added

to the potential of the node based of 𝐸𝑠𝑢𝑏 is the same as the value based on

𝐸, which preserves 𝜖-optimality.

𝑐(𝑅.𝑁𝑁(𝑣))− 𝑝(𝑣) > min
𝑢:(𝑣,𝑢)∈𝐸𝑠𝑢𝑏

𝑐𝑝(𝑣,𝑢) (2.7)

Proof. Equation 2.7 is equivalent to

𝑐(𝑅.𝑁𝑁(𝑣))− 𝑝(𝑣) > 𝑐𝑚𝑖𝑛 + 𝑝(𝑡)− 𝑝(𝑣)

Simplifying, we get

𝑐(𝑅.𝑁𝑁(𝑣)) > 𝑐𝑚𝑖𝑛 + 𝑝(𝑡)

50

For each outgoing edge 𝑒 of the node 𝑣 the following holds

∀𝑒→ 𝑐(𝑒) + 𝑝(𝑡′) > 𝑐 > 𝑐(𝑅.𝑁𝑁(𝑣)) > 𝑐𝑚𝑖𝑛 + 𝑝(𝑡)

As a result,

∀𝑒→ 𝑐(𝑒) + 𝑝(𝑡′)− 𝑝(𝑣) > 𝑐𝑚𝑖𝑛 + 𝑝(𝑡)− 𝑝(𝑣)

Last equation formulates the statement of the lemma: current reduced cost

is the minimum over all outgoing edges.

2.5 Distributed CSA

Although the original CSA was introduces as parallelizable and with

a possible distributed implementation [17], the novel algorithm analysis [18]

does not explicitly describe distributed version. We derive a list of possible

improvements and important notes about the distributed version of lately

published CSA, as well as present its complexity analysis.

A fundamental question in the area of distributed graph theory that

has been actively studied for many years is how much time complexity is

needed to solve a problem in CONGEST model. [21], [50], [51]. The notable

property of current algorithm is that is only unit massages are passed through

each channel per iteration.

Each process manages its own value of 𝑝𝑖 and can contain the flow

value 𝑓𝑖 for outgoing edges. It takes ⌈log2(𝑛)⌉ iterations until 𝜖 < 1
𝑛 to

termination. Further, we describe every part of CSA algorithm separately.

2.5.1 Raising potentials

In the paper, sequential 𝑟𝑎𝑖𝑠𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 is implemented by creating

one additional vertex 𝑟, that is the source, and solving SSSP problem with

multiple targets, that are deficits. In distributed version 𝑟 is not needed. A

process at the beginning of 𝑟𝑎𝑖𝑠𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 phase checks if it is an excess

and start its own SSSP search using synchronous BFS, that takes 𝑂(𝑚) time.

Two searches that started at different nodes may interfere, so that if a node

𝑥 was reached by one search and a distance 𝑑 was set to 𝑥 as a shortest

distance to the origin of the first search, and later another search claims that

51

the shortest distance to the second source is smaller than 𝑑, then 𝑑 is set to

the smallest distance.

The same argument about iterations as in section 2.5.2 can be applied

here. We define the end of 𝑟𝑎𝑖𝑠𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 phase as a moment when at

the end of SSSP algorithm iteration one of the runs started in one of the

processes reach a deficit node. At that moment, every other node in any

connected component has either infinite distance to the source of SSSP or

a distance that is not greater than the distance to 𝑢 that was found in the

current iteration. So, if the global end of current phase was announced, then

each process can decide about the value Δ𝑝𝑖. If a node has infinite distance,

then a 𝑝𝑖 value is not updated. If a node changed its shortest distance from

infinity to some value exactly at the last iteration before phase transition,

then it also does not update 𝑝. Otherwise, it should update 𝑝 using its 𝑑𝑙

value and 𝑑𝑙(𝑢) value that could be broadcasted by synchronizer.

Authors describe a faster implementation of 𝑟𝑎𝑖𝑠𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 using

Dial’s shortest path algorithm. However, as was shown in the section about

SSSP, this is not the most efficient approach in a parallel setting. For example,

Delta-stepping algorithm can be used instead. Dial’s algorithm allow early

termination, so it may be faster, but this benefit is advantageous only in

sequential mode.

2.5.2 End of Iteration

Another implementation detail that should be mentioned is the end of

an iteration. The algorithm repeats phases until a flow becomes a circulation.

In distributed setting, the end of the iteration is defined by a synchronization

method, that can be a synchronizer. After a blocking flow calculation phase,

each process knows if it is an excess. Let 𝑟𝑎𝑖𝑠𝑒𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 phase go after each

blocking flow calculation phase. At the end of 𝑟𝑎𝑖𝑠𝑒𝑃𝑜𝑡𝑒𝑡𝑖𝑎𝑙𝑠 a synchronizer

should know that every process has finished current phase. But a process

can additionally notify the synchronizer if the process actually did at least

something at the current phase, i.e. if it has been in an excess subset

of vertices. A synchronizer then can decide, if nobody was active in this

phase, then start new iteration, otherwise start new phase again. Although

52

we consider a synchronous model of distributed system, this way using a

synchronizer is legitimate, since it equivalent to the definition of the end of

an iteration in a certain way, which includes a condition to the inner state of

each process at the end of a phase. Note, that this also implies that message

complexity should not include this synchronization costs.

However, this makes our algorithm centralized, since now it needs a

synchronizer. Moreover, this synchronizer should now a particular protocol

to work with the system, that differs from simple round-begin/round-end

notifications. One can argue that this actually brings the model to the

asynchronous one because we define a way synchronizer works.

In this case, we have to take into consideration the communication

complexity of centralized synchronization, here and further we should add

𝑂(𝑛) term for any place where we use phase transition. Theoretically, this

can be improved by removing centralization and adding verification, that

could be done in Ω(
√
𝑛+𝐷) time [51].

2.5.3 Blocking Flow Algorithm

Originally, blocking flow method was introduced in [52]. [17] suggests

𝑂(𝑛 log(𝑛)) time complexity algorithm for blocking flow calculation. A lower

bound for parallel implementation was proved by [53]. Using PRAM without

bit operations, the problem can be solved in 𝑂(𝑛1/8). [23] converges the

shortest path in a finite number of steps.

This time was improved in [18] to 𝑂(𝑚), using DFS and exploiting

the property of 𝐺𝐴 that it is acyclic and contains unit capacities. Currently,

this is the best upper bound for unit capacities. DFS can be easily run in

distributed system using 𝑂(𝑑𝑖𝑎𝑚) time and 𝑂(𝑚) message complexity.

2.5.4 Complexity

For sequential run the upper bound for time is [18]:

𝑂(min{𝑛,𝑚1/2𝑈 1/2,𝑛2/3𝑈 1/3}𝑚min{log 𝑛,𝑈} log(𝑛𝐶))

Summarizing all above, for communication complexity, we have

𝑂(min{𝑚1/2,𝑛2/3}) steps for each iteration and log(𝑛𝐶) iterations for

53

distributed setting as well. At each iteration we have 𝑂(𝐷) messages for

each DFS during a blocking-flow computation and 𝑂(𝑚) messages for BFS

for each excess node. In the worst case, there can be 𝑂(𝑛) excesses, however

for latest iterations another bound of

𝑂(min{𝑚1/2,𝑛2/3})

on a number of excesses exist [18]. In total, for unit capacities, we get the

communication complexity of

𝑂(min{𝑚1/2,𝑛2/3}𝑚𝐷𝑛 log(𝑛𝐶))

.

For the timing complexity the difference with the sequential

estimation is in 𝑂(𝐷) for DFS run and 𝑂(𝐷) for BFS run. So, we have

𝑂(min{𝑚1/2,𝑛2/3}𝐷2 log(𝑛𝐶))

If we consider syncronization cost, that does not influence time

complexity, but would lead to additional 𝑛 term to communication

complexity:

𝑂(min{𝑚1/2,𝑛2/3}𝑚𝐷𝑛2 log(𝑛𝐶))

54

3 Experiments

All experiments were conducted on Ubuntu 14.03 operating system, on

a workstation with processor Intel(R) Xeon(R) CPU E5-2643 v2 @ 3.50GHz

and 32G RAM. All software is written in C++.

3.1 Assignment problem and SIA

In this section, we compare the performance of SIA algorithm with

LDA, DF-CSA, and BlossomV. We use our implementation of SIA and

LDA, described in the Section 2. An efficient implementation of BlossomV is

provided by the authors. DF-CSA implementation is part of LEMON library.

3.1.1 Complete Random Bipartite graphs

Complete Random Bipartite graph is expected to highlight the

benefits of SIA. Tight threshold and high density of a graph lead to a high

fraction of pruned edges and, as a result, high performance.

Data description The size of graphs for this experiment varies

between 128 and 16 384 nodes. Each graph contains 𝑛2

2 edges. SIA uses only

a subset of that edges, according to the presented pruning technique.

Three types of distributions of edge weights are used. C++ Boost

library is used as a random number generator.

1) Uniform distribution with weights in range 1 to 100

2) Gaussian distribution, PDF 𝑓(𝑥) = 1
𝜎
√
1𝜋

exp− (𝑥−𝜇)2
2𝜎2 , where 𝜇 = 30

and 𝜎 = 10

3) Exponential distribution, PDF 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥, where 𝜆 = 0.01

Results Figure 3.1 presents Total Execution time of 4 algorithms

mentioned above. For different types of weight distribution, SIA tends to have

the best time among exact solutions and almost the same time comparing to

Approximate LDA.

LDA shows better performance on small problems and it also has

an advantage of much simpler implementation, but the analysis of the

approximation error, presented on Figure 3.2, shows that LDA has a

55

significantly large error if a distribution is not Uniform. This shows that

SIA can be useful even if there is no exactness requirement in a problem.

On large scales for Uniform and Exponential distributions, BlossomV

surprisingly shows better scalability. However, the algorithm behaves in quite

an unstable manner, as we can see that on Gaussian distribution it suddenly

becomes extremely slow.

(a) Uniform weight distribution (b) Gaussian weight distribution

(c) Exponential weight distribution

Figure 3.1 — Scalability of algorithms on Complete Bipartite graphs

The tendency of decrease of total cost for Gaussian and Exponential

distributions are another remarkable result. If a problem is big enough, an

exact algorithm can find a connection (edge) with minimal weight and for

mentioned problems the minimum value of weight is equal to zero. So, total

sum has a limit of 0 with bigger problem size as well. This also motivates to

use exact solution for minimization problems, as well as half-approximation

guarantee violation, presented in Section 1.

Spatial Data A geometric graph, where a weight of each edge is

equal to the distance between nodes in space, has a distribution of edge

56

(a) Uniform weight distribution (b) Gaussian weight distribution

(c) Exponential weight distribution

Figure 3.2 — Approximation error of LDA

Figure 3.3 — Performance of SIA, LDA and DF-CSA on Bipartite Uniform

Spatial data

57

weights, illustrated on Figure 3.4. The results are illustrated on Figure 3.3.

The relative performance of SIA is comparable with results on Complete

Random Bipartite graphs, that is in correlation with the fact of close

similarity of distributions. But additionally to the time superiority, SIA takes

advantage out of space benefits for large problems, since there is no need of

holding complete graph in the memory.

Figure 3.4 — Distribution of weights of edges in geometric graph based on

random point distribution

3.1.2 Sparse graphs

The influence of graph sparsity is illustrated on Figure 3.5. For

a complete bipartite graph, some random edges are removed. At each

experiment, we remove a certain number of random edges equally for each

node. The total resulting number of edges is a variable on the plot. As a

result, we can observe a dependence on the sparsity of the graph. Three

types of weight distribution are used, the same as in the previous section.

For all three distributions, SIA shows excellent results with a

total time almost the same as an approximate algorithm. No significant

dependence on graph sparsity is observed. DF-CSA is distinctive by its

stability and equal performance for any distribution, however, the total

time linearly increases. BlossomV, as in the previous section, show bad

performance on Gaussian weight distribution. Probably, the quality of the

algorithm depends on the possibility to collapse blossoms, so we can see a

high peak on the first and third plots, and there are no satisfactory conditions

to do that on the second.

58

(a) Uniform weight distribution (b) Gaussian weight distribution

(c) Exponential weight distribution

Figure 3.5 — Dependence of bipartite graph sparsity on the performance of

matching algorithms

59

3.1.3 Heap value variation

In this section, we compare two options for a pruning threshold.

Article-based is a threshold, described in the Section 1.3. Simplified is

a novel approach, described in Section 2.2. Figure 3.6 shows that on

complete bipartite graph Simplified version runs faster on all types of weight

distributions, especially for Gaussian.

(a) Uniform weight distribution (b) Gaussian weight distribution

(c) Exponential weight distribution

Figure 3.6 — Performance of novel heap threshold

3.2 DF-CSA analysis

First, we test sorting and pruning on complete bipartite graphs. This

time, we consider all three types of distribution together. Figure 3.7b shows

that there is no significant improvement on performance, especially on larger

scales.

Figure 3.8 shows the fraction of pruned edges for S-DF-CSA. The

data used is randomly distributed points in space. Every two points allow

60

bidirectional transfer of a flow, i.e. in the graph representation for each pair

of nodes there are two edges in both directions between them. Every line on

the figure represent the total amount of nodes in the graph (3.8a) or number

of source nodes in the graph of size 8192 nodes (3.8b). A number of target

nodes are always greater than a number of source nodes in this experiment.

We calculate the saturation of the graph as an average fraction of a number of

edges that have been traversed through the algorithm divided by the number

of total edges for each node.

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
1

𝑛

∑︁
𝑣∈𝑉

|{(𝑣,𝑤) ∈ 𝐸𝑠𝑢𝑏}|
|{(𝑣,𝑢) ∈ 𝐸}|

The absolute amount of source nodes varies from half of the size of the graph

down to 1/128 of the size, decreasing in geometric order every power of 2.

Results show that there is only slight dependence for uniform

distribution between edge saturation of the graph and the ratio. In general,

our method allows pruning 10-30% of edges for the uniform distribution.

Larger scales lead to the smaller amount of pruned edges, partially because

an absolute number of source and target nodes is larger, so they evenly cover

a larger fraction of a space. Smaller graphs allow pruning more data, for

some, the ratio even drops below 30%. The bipartite case is a special case

of unit ratio, and for most graph sizes saturation does not differ much even

from a single-source case.

3.2.1 Heuristics influence

As was mentioned above, DF-CSA uses several heuristics that

improves the solution. In this work we develop optimized algorithms that

are based on CSA, but in order to simplify our work, we omit embedding of

that heuristics in our solutions. Several experiments were conducted in order

to check the significance of those heuristics and a possibility to remove them

while designing new algorithm. Results are illustrated on fig. 3.9. As we can

see that the impact is not significant, we leave embedding of heuristics in our

approach as a future work.

61

(a) Randomly distributed points in space,

all fractions of source/target nodes

(b) Complete bipartite graph (all types of

weight distributions)

Figure 3.7 — Influence of sorting and pruning on DF-CSA performance

(a) Each line represent the size of the graph
(b) Each line represents number of source

nodes, the size fixed on 8192 nodes

Figure 3.8 — Dependence of the fraction of non-pruned edges on the ratio

𝑠𝑜𝑢𝑟𝑐𝑒𝑠/𝑡𝑎𝑟𝑔𝑒𝑡𝑠 in S-DF-CSA for randomly distributed spatial points

62

Figure 3.9 — The impact of heuristics on DF-CSA on random full bipartite

graphs

For a graph of small diameter, like the Internet topology graph from

SNAP library [54] by Skitter (1.7 · 106 nodes, 11 · 106 edges, Longest path:
25), the heuristic has an opposite effect: if all paths between sources and

destinations are very short, then the usage of heuristics slows down the

algorithm. For the mentioned graph for randomly distributed sources and

targets, it takes about 5 seconds to finish Lemon-based implementation and

less than one second to run DF-CSA without any heuristic.

3.3 S-CSA analysis

In this section, we investigate the performance of 3 variations of

S-CSA on spatial uniformly distributed random points. Each point has a

possibility to send flow to any other point in the space. 3 variations include

(1) decreasing 𝜖 from the size of the universe (maximum available distance

between any pair of points) to 1; (2) holding 𝜖 = 1 throughout the algorithm;

(3) the same as in (1), but with disabled pruning. We call the variations

"Large epsilon "Unit epsilon"and "No pruning accordingly. Note, that the

first variation is S-CSA as described in Algorithm 7, the second variant

is a simple generalization of SIA on general graphs, and the third is our

implementation of the classical Cost-Scaling algorithm with bucket-based

Dijkstra and graph representation described in the previous Chapter.

63

3.3.1 Graph traversal

In this section, we investigate the behavior of Dijkstra algorithm in

different variations of the algorithm. The length of the shortest path in

Unit Epsilon variation os S-CSA is illustrated on Figure 3.10. First of all,

we consider a bipartite case (subfigures (a),(b) and (e)). SIA has the same

behavior since Unit epsilon case applied on a bipartite graph is almost the

same algorithm as SIA. The difference is only in a subset of edges where a

maximum potential is calculated from, and missing 𝐻𝑢𝑝𝑑 in S-CSA. We can

see that majority of iterations stops after 1-2 hops and when all possibilities

to assign one of the first nearest neighbors are utilized, then the algorithm

starts to reassign nodes. On Figure 3.10a there is an increase in hops closer

to the end of the algorithm. The increase of the shortest path cost on Figure

3.10b also confirms the late reassignment.

Spatial data with all possible flow directions does not have such

property. Short and long shortest paths are alternating, together with a

total path cost (Figures 3.10d, 3.10c). The magnitude is also much bigger

in average than in the bipartite case. However, in the majority of iterations,

the length is still about one, so there is a potential for a pruning.

3.3.2 Spatial uniformly distributed random data

The experiment conducted for a different amount of sources, targets

and graph sizes. A graph for this problem set is a clique. For each graph

size number 𝑁 of sources vary from 128 to the half of a graph size each

power of 2. We refer to the number of sources as 𝑆. For each 𝑆, number of

targets 𝑇 vary from 𝑇 to 𝑁/2. Supply value for each target is 1 and for each

source, it is equal to 𝑆/𝑇 , i.e. a flow should be equally distributed between

sources. While describing results, we assume that if a parameter is not set,

then all possible values are used. For example, if a plot illustrates Total time

depending on 𝑆 for 𝑁 = 128, then for each 𝑆 all possible 𝑇 are used.

The results are shown of Figures 3.12 and 3.11. Figure 3.11 shows the

dependence of algorithm time on number of target nodes. Algorithm time

is a total running time without time for finding next nearest neighbor. Last

64

(a) A length (hops) of a shortest

distance at each iteration (bipartite)

(b) A minimum distance to a target at

each iteration (bipartite)

(c) A length (hops) of a shortest

distance at each iteration (spatial)

(d) A minimum distance to a target at

each iteration (spatial)

(e) A histogram of length of all shortest

paths throughout the execution

(bipartite)

(f) A histogram of length of all shortest

paths throughout the execution

(spatial)

Figure 3.10 — A length and minimum distances during Dijkstra execution

on complete bipartite random graph of size 512 with uniform weights, and

on randomly distributed spatial points of size 1024 with 32 sources and 128

targets
65

two plots show total running time as well. The time of S-CSA with Unit

Epsilon overcomes S-CSA with Large Epsilon in all experiments of this set.

Also, Large epsilon has a very significant dispersion of the time. For unlucky

distributions, the time can rapidly increase several times, so the solution

turned out to be quite unstable for different source and target distributions.

The S-CSA with no pruning behaves differently comparing to other variations

depending on the size of the problem. For smaller sizes, S-CSA with Unit

Epsilon shows the best time, but for larger problems classical cost-scaling

approach is better. This correlates with the number of pruned edges, that is

larger for small graphs. However, last two plots with total running time show

that for randomly distributed points in sequential setting the time for adding

edges does not radically change the ratio of performance between different

algorithm variations. The ratio is nearly the same according to the Algorithm

time, despite the fact that the time for adding new edges increases the total

running time almost twice.

Figure 3.12 is similar to the previous one. It illustrates the dependence

of algorithm time on a number of source nodes. The general tendency is the

same. Also, we can mention that experiments did not reveal any noticeable

dependence of the performance on the number of sources or targets. Last

two subplots on the figure illustrate the dependence on the ratio between

sources and targets. A slight dependence is visible, but it is not significant

and mainly describes the increase in the running time if a sum of source and

target nodes is bigger.

3.3.3 Clustered spatial points

In order to test the difference between 𝜖(𝑇) functions on more complex

topology, we generated clustered spatial points with a different number of

sources 𝑆, targets 𝑇 , total points 𝑁 and a number of clusters 𝐶. Examples

of data are illustrated on the Figure 3.13. Results of the experiment are

combined in two Figures 3.14 and 3.15. Figure 3.14 shows the total time of the

algorithm depending on different variables. Figure 3.15 shows the saturation

of the graph, i.e. number of edges added divided by the total available edges.

66

(a) 𝑁 = 128 (b) 𝑁 = 256

(c) 𝑁 = 512 (d) 𝑁 = 2048

(e) 𝑁 = 4096 (f) 𝑁 = 8192

(g) Time with edge addition 𝑁 = 128
(h) Time with edge addition for

𝑁 = 8192

Figure 3.11 — Dependence of total running time without edge addition time

on 𝑇 for 𝑁

67

(a) 𝑁 = 128 (b) 𝑁 = 256

(c) 𝑁 = 512 (d) 𝑁 = 2048

(e) 𝑁 = 4096 (f) 𝑁 = 8192

(g) Parameter: ratio 𝑆
𝑇
for 𝑁 = 128 (h) Parameter: ratio 𝑆

𝑇
for 𝑁 = 4096

Figure 3.12 — Dependence of total running time without edge addition time

on 𝑆 for 𝑁

68

We vary every mentioned parameter in order to find a range of parameters

where each variation of the algorithm gives the best relative performance.

As we can see on the plots, in general, the fraction of pruned edges

is about 0.5 for small problems sizes or small source and target nodes.

For a more dense fraction of sources and targets, all edges become covered

and the benefit from pruning vanishes. Total time reflects this, S-CSA with

pruning outperforms pure 𝜖-scaling on smaller problems. Another note is that

unfortunately, Large Epsilon modification loses comparing to Unit epsilon

almost on each sample. Unit epsilon naturally should have a larger fraction

of pruned edges since potential values are tighter, and the benefits from cost

scaling can not beat that. Also, it is important to mention the huge variation

of total time of S-CSA with pruning. It greatly depends on the topology of

the graph.

Figure 3.13 — Examples of clustered points. Red points - sources, green -

targets, blue - neutral

3.4 Power Flow optimization

In order to test our algorithms on real-world data, we used the

graph of power plants and cities in China. The data was obtained from The

China Climate and Energy Map, a project of the Natural Resources Defense

Council’s China Program http://www.chinaenergymap.org/. Instead of

solving Optimal Power Flow problem, we solve a problem of finding optimal

power grid over the country, such that all capacities of power plants and

69

http://www.chinaenergymap.org/

(a) Time(𝐶), 𝑁 = 256, 𝑆 = 𝑇 = 64 (b) Time(𝐶), 𝑁 = 2048, 𝑆 = 𝑇 = 64

(c) Time(𝐶), 𝑁 = 2048, 𝑆 = 𝑇 = 1024 (d) Time(𝑁), 𝐶 = 6, 𝑆 = 𝑇 = 64

(e) Time(𝑆), 𝑁 = 2048, 𝐶 = 10,

𝑇 = 1024
(f) Time(𝑇), 𝑁 = 2048, 𝐶 = 10, 𝑆 = 16

(g) Time(𝑆), 𝑁 = 512, 𝐶 = 2, 𝑇 = 256 (h) Time(𝑇), 𝑁 = 512, 𝐶 = 2, 𝑆 = 1

Figure 3.14 — Dependence of total running time on 𝑆, 𝑇 , 𝐶, 𝑁

70

(a) Saturation(𝑁), 𝐶 = 2, 𝑆 = 𝑇 = 64
(b) Saturation(𝐶), 𝑁 = 1024,

𝑆 = 𝑇 = 64

(c) Saturation(𝑆), 𝑁 = 2048, 𝐶 = 10,

𝑇 = 1024

(d) Saturation(𝐶), 𝑁 = 2048,

𝑆 = 𝑇 = 1024

(e) Saturation(𝑆), 𝑁 = 512, 𝐶 = 2,

𝑇 = 256

(f) Saturation(𝑇), 𝑁 = 512, 𝐶 = 2,

𝑆 = 1

Figure 3.15 — Dependence of Saturation on 𝑆, 𝑇 , 𝐶, 𝑁

71

demands of large cities were satisfied. Given a power consumption of a region

and its population, we assume that there is a linear dependency between

these two parameters, see Figure 3.17. The Energy Map provides data about

the population of major cities and the capacities of Coal, Nuclear, Gas and

Hydro power plants. We build the graph in such a way that each plant is

a spatial point with zero supply, each city is a point with negative supply,

and one auxiliary non-spatial node is connected to each plant with a zero

cost edge and upper flow bound equal to the capacity of that plant. The

resulting graph is illustrated on Figure 3.18. In order to make the problem

less straightforward, we add non-linearity in a sense that the cost of each

unit of flow between two points is quadratically dependent on the distance

between them. Note here, that the framework of our algorithms allow any

monotonically increasing function to be applied to the distance, since the

only place in any pruning algorithm where a distance is used is sorting. While

sorting is feasible, an algorithm performs correctly. The data contain 1992

points. DF-CSA process mentioned graph is 16.23 seconds and S-DF-CSA is

5.61 seconds (Figure 3.16).

Figure 3.16 — The performance of algorithms on Chinese Energy Map

72

Figure 3.17 — The correlation between power consumption and population

Figure 3.18 — Chinese energy map. Red - power plants, green, blue - cities

73

Conclusions

In this thesis we proposed several algorithms for Circulation Problem

and Bipartite Matching problem, and investigated their performance on

different types of data, in particular spatial data. They include a better

threshold for SIA, that provide a slight improvement on complete bipartite

graphs, a modification of DF-CSA and a novel S-CSA, that combined cost

scaling technique and a pruning method of SIA. Unfortunately, 𝜖-scaling does

not fit well with pruning. The possible explanation behind this may be the

intuition that both methods solve a problem by incremental increasing of an

accuracy of current solution, but do it in complete opposite ways. The pruning

method is based on increasing the number of used edges, that are sorted,

i.e. increasing the accuracy by incremental exploring farther points. 𝜖-scaling

does the opposite. It increases the accuracy by first observing farthest points,

and then after it finds an approximate coarse-grained solution, it starts to

investigate fine-grained opportunities to improve the solution. On the other

hand, 𝜖 is decreasing over the time and for some topologies of a graph the

pruning gives a good gain in time.

Comparison of S-CSA with Large epsilon and Unit Epsilon clearly

showed that Unit Epsilon performs better. Naturally, Unit Epsilon leads to

a higher fraction of pruned edges, since the potential values are always tight.

But Large Epsilon may increase Dijstkra execution on the earlier stages of

the algorithm, so the benefit of Unit Epsilon was not quite clear. It turned

out that even small growth of pruned edges can give more benefit to the

execution time than reducing shortest path length by 𝜖-approximation.

Pruning technique showed better results than classical Cost Scaling

approach on many samples, mainly on small graphs or graphs with small

amount of sources and targets. However, it lacks the stability and greatly

depends on the topology. Bipartite case is still the best option to use

pruning, that was also confirmed by the comparison with other state-of-the

art algorithms.

74

References

1. Kolmogorov, Vladimir. Blossom V: a new implementation of a

minimum cost perfect matching algorithm / Vladimir Kolmogorov //

Mathematical Programming Computation. — 2009. — Vol. 1, no. 1. —

Pp. 43–67.

2. Morteza Fayyazi David Kaeli, Waleed Meleis. Parallel Maximum

Weight Bipartite Matching Algorithms for Scheduling in Input-Queued

Switches / Waleed Meleis Morteza Fayyazi, David Kaeli // IEEE. —

2004.

3. Quantifying the benefits of vehicle pooling with shareability net

works / Paolo Santi, Giovanni Resta, Michael Szell et al. // Proceedings

of the National Academy of Sciences. — 2014. — Vol. 111, no. 37. —

Pp. 13290–13294.

4. Optimal matching between spatial datasets under capacity

constraints / Leong Hou U, Kyriakos Mouratidis, Man Lung Yiu,

Nikos Mamoulis // ACM Transactions on Database Systems (TODS).

— 2010. — Vol. 35, no. 2. — P. 9.

5. Hopcroft, JE. An n5̂/2 algorithm for maximum matchings in bi

partite graphs / JE Hopcroft // SIAM Journal on computing. — 1973.

6. Bertsekas, Dimitri P. Auction algorithms for network flow prob

lems: A tutorial introduction / Dimitri P. Bertsekas // Computational

Optimization and Applications. — 1992.

7. Duan, Ran. Scaling algorithms for approximate and exact maxi

mum weight matching / Ran Duan, Seth Pettie, Hsin-Hao Su // arXiv

preprint arXiv:1112.0790. — 2011.

8. Near-Optimal Distributed Maximum Flow / Mohsen Ghaffari, An

dreas Karrenbauer, Fabian Kuhn et al.

9. Communication Complexity of Approximate Matching in Dis

tributed Graphs / Zengfeng Huang, Božidar Radunović, Milan Vojnović,

Qin Zhang // 32nd International Symposium on Theoretical Aspects of

Computer Science. — 2015. — P. 460.

10. Dijkstra, E. W. A note on two problems in connexion with

graphs / E. W. Dijkstra // Numerische Mathematik. — Vol. 1. —

75

P. 269–271.

11. Panitanarak, Thap. Performance analysis of single-source short

est path algorithms on distributed-memory systems / Thap Panitanarak,

Kamesh Madduri // CSC14: The Sixth SIAM Workshop on Combinato

rial Scientific Computing. — 2014. — P. 60.

12. Meyer, Ulrich. Δ-stepping: a parallelizable shortest path algo

rithm / Ulrich Meyer, Peter Sanders // Journal of Algorithms. — 2003.

— Vol. 49, no. 1. — Pp. 114–152.

13. Kuhn, Harold W. The Hungarian method for the assignment prob

lem / Harold W Kuhn // Naval research logistics quarterly. — 1955. —

Vol. 2, no. 1-2. — Pp. 83–97.

14. Ford, Lester R. Maximal flow through a network / Lester R Ford,

Delbert R Fulkerson // Canadian journal of Mathematics. — 1956. —

Vol. 8, no. 3. — Pp. 399–404.

15. Derigs, Ulrich. A shortest augmenting path method for solving

minimal perfect matching problems / Ulrich Derigs // Networks. — 1981.

— Vol. 11, no. 4. — Pp. 379–390.

16. Edmonds, Jack. A glimpse of heaven / Jack Edmonds // History

of Mathematical Programming: A collection of Personal Reminiscences

(JK Lenstra, AHG Rinnoy Kan and A. Schrijver eds.), North-Holland.

— 1991. — Pp. 32–54.

17. Goldberg, Andrew V. Finding minimum-cost circulations by suc

cessive approximation / Andrew V Goldberg, Robert E Tarjan // Mathe

matics of Operations Research. — 1990. — Vol. 15, no. 3. — Pp. 430–466.

18. Andrew V. Goldberg Haim Kaplan, et al. Minimum cost flows in

graphs with unit capacities / et al. Andrew V. Goldberg, Haim Kaplan //

32nd International Symposium on Theoretical Aspects of Computer Sci

ence. — 2015. — P. 460.

19. Cunningham, William H. A network simplex method /

William H Cunningham // Mathematical Programming. — 1976. —

Vol. 11, no. 1. — Pp. 105–116.

20. Kovacs, Peter. Minimum-cost flow algorithms: an experimental

evaluation / Peter Kovacs // Optimization Methods and Software. —

76

2015. — Vol. 30. — Pp. 94–127.

21. Henzinger, Monika. An Almost-Tight Distributed Algorithm

for Computing Single-Source Shortest Paths / Monika Henzinger,

Sebastian Krinninger, Danupon Nanongkai // arXiv preprint arX

iv:1504.07056. — 2015.

22. Wattenhofer, Mirjam. Distributed weighted matching / Mir

jam Wattenhofer, Roger Wattenhofer. — Springer, 2004.

23. Bertsekas, Dimitri P. Distributed asynchronous relaxation meth

ods for linear network flow problems / Dimitri P Bertsekas, Jonathan Eck

stein. — 1986.

24. Bartal, Yair. Probabilistic approximation of metric spaces and

its algorithmic applications / Yair Bartal // Foundations of Computer

Science, 1996. Proceedings., 37th Annual Symposium on / IEEE. — 1996.

— Pp. 184–193.

25. Racke, Harald. Optimal hierarchical decompositions for conges

tion minimization in networks / Harald Racke // Proceedings of the

fortieth annual ACM symposium on Theory of computing / ACM. —

2008. — Pp. 255–264.

26. Peleg, David. Distributed computing / David Peleg // SIAM

Monographs on discrete mathematics and applications. — 2000. — Vol. 5.

27. Executing dynamic data-graph computations deterministical

ly using chromatic scheduling / Tim Kaler, William Hasenplaugh,

Tao B Schardl, Charles E Leiserson // Proceedings of the 26th ACM

symposium on Parallelism in algorithms and architectures / ACM. —

2014. — Pp. 154–165.

28. A distributed algorithm for the maximum flow problem /

Thuy Lien Pham, Ivan Lavallee, Marc Bui, Si Hoang Do // Parallel

and Distributed Computing, 2005. ISPDC 2005. The 4th International

Symposium on / IEEE. — 2005. — Pp. 131–138.

29. Approximate weighted matching on emerging manycore and

multithreaded architectures / Mahantesh Halappanavar, Oreste Vil

la John Feo, Antonino Tumeo, Alex Pothen // The International Journal

of High Performance Computing Applications. — 2012.

77

30. Hoepman, Jaap-Henk. Simple Distributed Weighted Matchings /

Jaap-Henk Hoepman // arXiv preprint cs/0410047. — 2008.

31. Preis, Robert. Linear Time 1/2 -Approximation Algorithm for

Maximum Weighted Matching in General Graphs / Robert Preis //

Springer-Verlag Berlin Heidelberg. — 1999.

32. NJ Davis BA Carpenter, CW Glover. Parallel approaches to the

solution of the assignment problem / CW Glover NJ Davis, BA Carpen

ter // Concurrency: Practice And Experience. — 1992.

33. et al., Thomsen. Effective caching of shortest paths for lo

cation-based services / Thomsen et al. // SIGMOD. — 2012. —

Pp. 313–324.

34. Cooper, Keith D. A simple, fast dominance algorithm / Kei

th D Cooper, Timothy J Harvey, Ken Kennedy // Software Practice

& Experience. — 2001. — Vol. 4. — Pp. 1–10.

35. TOUCH: in-memory spatial join by hierarchical data-oriented par

titioning / Sadegh Nobari, Farhan Tauheed, Thomas Heinis et al. // Pro

ceedings of the 2013 ACM SIGMOD International Conference on Man

agement of Data / ACM. — 2013. — Pp. 701–712.

36. Bouros, Panagiotis. Spatio-textual similarity joins / Panagio

tis Bouros, Shen Ge, Nikos Mamoulis // Proceedings of the VLDB En

dowment. — 2012. — Vol. 6, no. 1. — Pp. 1–12.

37. Rice, Michael. Graph indexing of road networks for shortest path

queries with label restrictions / Michael Rice, Vassilis J Tsotras // Pro

ceedings of the VLDB Endowment. — 2010. — Vol. 4, no. 2. — Pp. 69–80.

38. Towards online shortest path computation / Hong Jun Zhao,

Man Lung Yiu, Yuhong Li et al. // Knowledge and Data Engineering,

IEEE Transactions on. — 2014. — Vol. 26, no. 4. — Pp. 1012–1025.

39. Thomsen, Jeppe Rishede. Effective caching of shortest paths for

location-based services / Jeppe Rishede Thomsen, Man Lung Yiu, Chris

tian S Jensen // Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data / ACM. — 2012. — Pp. 313–324.

40. Guttman, Antonin. R-trees: a dynamic index structure for spatial

searching / Antonin Guttman. — ACM, 1984. — Vol. 14.

78

41. Greene, Diane. An implementation and performance analysis of

spatial data access methods / Diane Greene // Data Engineering, 1989.

Proceedings. Fifth International Conference on / IEEE. — 1989. —

Pp. 606–615.

42. The R*-tree: an efficient and robust access method for points

and rectangles / Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider,

Bernhard Seeger. — ACM, 1990. — Vol. 19.

43. Roussopoulos, Nick. Nearest neighbor queries / Nick Roussopou

los, Stephen Kelley, Frédéric Vincent // ACM sigmod record / ACM. —

Vol. 24. — 1995. — Pp. 71–79.

44. Hjaltason, Gı́sli R. Distance browsing in spatial databases /

Gı́sli R Hjaltason, Hanan Samet // ACM Transactions on Database Sys

tems (TODS). — 1999. — Vol. 24, no. 2. — Pp. 265–318.

45. A concurrent k-NN search algorithm for R-tree / Jagat Sesh Chal

la, Poonam Goyal, S Nikhil et al. // Proceedings of the 8th Annual ACM

India Conference / ACM. — 2015. — Pp. 123–128.

46. Goldberg, Andrew V. Network Flow Algorithms / Andrew V Gold

berg, Eva Tardos, Robert E Tarjan // REPRINT FROMALGORITHMS

AND COMBINATORICS VOLUME 9 / Citeseer.

47. Finding minimum-cost flows by double scaling / Ravindra K Ahu

ja, Andrew V Goldberg, James B Orlin, Robert E Tarjan //Mathematical

programming. — 1992. — Vol. 53, no. 1-3. — Pp. 243–266.

48. Dezső, Balázs. LEMON–an open source C++ graph template li

brary / Balázs Dezső, Alpár Jüttner, Péter Kovács // Electronic Notes in

Theoretical Computer Science. — 2011. — Vol. 264, no. 5. — Pp. 23–45.

49. Shun, Julian. Ligra: A Lightweight Graph Processing Framework

for Shared Memory / Julian Shun, Guy Blelloch // Proceedings of the

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro

gramming (PPoPP), pp. 135-146. — 2013.

50. Nanongkai, Danupon. Distributed approximation algorithms for

weighted shortest paths / Danupon Nanongkai // Proceedings of the 46th

Annual ACM Symposium on Theory of Computing / ACM. — 2014. —

Pp. 565–573.

79

51. Distributed verification and hardness of distributed approxima

tion / Atish Das Sarma, Stephan Holzer, Liah Kor et al. // SIAM Journal

on Computing. — 2012. — Vol. 41, no. 5. — Pp. 1235–1265.

52. Dinic, E.A. Algorithm for solution of a problem of maximum flow

in networks with power estimation. / E.A. Dinic // Soviet Mathematical

Docladi 11. — 1970. — P. 1277–1280.

53. Mulmuley, Ketan. A Lower Bound on Computing Blocking Flows

in Graphs / Ketan Mulmuley, Pradyut Shah.

54. Talbi, EG. Parallel combinatorial optimization / EG Talbi. — Wi

ley-Interscience, 2006.

80

	Introduction
	Background
	Problem Statement
	Minimum Cost Flow problem
	Flow Maximization
	Minimum Cost Maximum Flow problem
	Assignment Problem

	Solutions of Network Flow problem
	Exact Algorithms
	Distributed Algorithms
	Parallelization
	Dynamic Algorithms
	Approximate Algorithms

	Simplified Incremental Algorithm
	Network flow algorithms for spatial data
	Cost-Scaling algorithm
	Intuition under parameter
	Variations and Improvements of CSA

	Depth-first Cost-Scaling algorithm
	Implementation details

	Design
	Graph representation
	Modified SIA
	Spatial-Optimized Cost Scaling Algorithm
	Error parameter dynamics

	Pruning in DF-CSA
	Distributed CSA
	Raising potentials
	End of Iteration
	Blocking Flow Algorithm
	Complexity

	Experiments
	Assignment problem and SIA
	Complete Random Bipartite graphs
	Sparse graphs
	Heap value variation

	DF-CSA analysis
	Heuristics influence

	S-CSA analysis
	Graph traversal
	Spatial uniformly distributed random data
	Clustered spatial points

	Power Flow optimization

	Conclusions
	References

